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Conditional Expectations and Martingales



Conditional Expectations

Definition (Conditional Expectation)
Let X ∈ L1(Ω,A,P) and F ⊆ A be a σ-algebra over Ω . The conditional
expectation of X with respect to F is a F-B(R)-measurable random variable
XF : (Ω,F) → (R,B(R)) for which we have∫

F
X dP =

∫
F

XF dP|F for all F ∈ F . (CE)

Remark
Let X ∈ L1(Ω,A,P) and Y : (Ω,A) → (E, E) measurable. We will use the
abbreviations E(X | Y ) := E(X | Y−1(E))) := XY−1(E) .
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Existence & Uniqueness of Conditional Expectations

Theorem (Existence & Uniqueness of Conditional Expectations)
Let X ∈ L1(Ω,A,P) and F ⊆ A be a σ-algebra over Ω .

(a) If XF ,YF ∈ L1(Ω,F ,P) satisfy

E(X1F) = E(XF
1F) = E(YF

1F) for all F ∈ F ,

then XF = YF P-almost surely.

(b) A random variable XF : (Ω,F) → (R,B(R)) fulfilling (CE) exists.

Proof Sketch.
· The positive and negative part of X are densities with respect to P and thus

each induce a measure on (Ω,F) .

· As both of these measures are absolutely continuous with respect to P|F , by
the Radon-Nikodym-Theorem there exist densities with respect to P|F .

· Subtracting these densities, one obtains XF .

· XF is unique as any absolute difference of two candidates is integrable and
must almost surely be zero due to (CE) .
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Martingales

Definition (Discrete Filtration)
Let (Ω,A) be a measurable space. A sequence F1 ⊆ F2 ⊆ . . . of sub σ-fields of A
over Ω is called a filtration over (Ω,A) .

Definition (Discrete Martingale)
Let (Ω,A,P) be a probability space and (Fn)n∈N be a filtration over (Ω,A) . The
random variables (Xn)n∈N are called a martingale with respect to (Fn)n∈N :⇐⇒

(a) Xn ∈ L1(Ω,Fn ,P) and

(b) E (Xn+1 | Fn) = Xn P-almost surely for all n ∈ N .
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A Simple Martingale

Example (Gambler’s Ruin 1)
Let (Zn)n∈N be i.i.d. random variables such that the associated probability measure
is

PZ1 =
δ1 + δ−1

2
.

We define

Xn :=
n∑

j=1
Zj for all n ∈ N .

(Xn)n∈N is a martingale with respect to σ-algebra Fn := I(Z1, . . . ,Zn) , as

(a) E|Xn | = nE|Z1| = n and Xn is Fn-B(R)-measurable and

(b) E(Xn+1 | Fn) = E(Zn+1 | Fn) + Xn = EZn+1 + Xn = Xn .
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A Simple Martingale

Figure 1: A realization of 50 independent copies of (Xk)k≤n , where n = 7 · 104 .
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Stopping Times



The Stopping Lemma

Lemma (Stopping Lemma)
For a martingale (Xn)n∈N with respect to filtration (Fn)n∈N we have

EXn = EX1 for all n ∈ N .

Proof.
Due to property (b) of martingales we have

E (Xn+1 | Fn) = Xn P-almost surely for all n ∈ N

=⇒ E (E (Xn+1 | Fn)) = EXn for all n ∈ N

⇐⇒ EXn+1 = EXn for all n ∈ N .
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An Application of the Stopping Lemma

Example (Gambler’s Ruin 2)
We consider the simple example of a martingale we encountered in the previous
section – the random walk (Xn)n∈N . By the stopping lemma we conclude

EXn = EX1 = EZ1 = 0 for all n ∈ N .

Figure 2: A realization of s = 40 independent copies (Xj
k)k≤n of (Xk)k≤n and their

m-th sample mean at n , where n = 103,m ≤ s, j ≤ s .
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Stopped Processes

Definition (Stopping Time)
Let (Fn)n∈N be a filtration over a probability space (Ω,A,P) . A random variable
T : (Ω,A,P) → (N≤∞, 2N≤∞ ) such that

{T ≤ n} ∈ Fn for all n ∈ N

is called a stopping time with respect to (Fn)n∈N .

Remark
In the above setting,

T is a stopping time ⇐⇒ {T = n} ∈ Fn for all n ∈ N .

Definition (Stopped Process)
Let Xn : (Ω,A,P) → (E, E),n ∈ N be a process adapted to filtration (Fn)n∈N over
(Ω,A) and let T : (Ω,A,P) → (N≤∞, 2N≤∞ ) be a stopping time with respect to
(Fn)n∈N . We call

(XT
n )n∈N , where XT

n (ω) := Xmin{T(ω),n}(ω) for all ω ∈ Ω,n ∈ N

the stopped process.
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Stopped Processes

Definition (σ-algebra of the T-past)
Let T : (Ω,A,P) → (N≤∞, 2N≤∞ ) be a stopping time with respect to filtration
(Fn)n∈N over (Ω,A). We call

AT := {A ∈ A | A ∩ {T ≤ n} ∈ Fn for all n ∈ N}

the σ-algebra of the T-past.
Theorem
Let T : (Ω,A,P) → (N≤∞, 2≤∞) be finite and a stopping time with respect to
filtration (Fn)n∈N over (Ω,A). Let further Xn : (Ω,A,P) → (R,B(R)),n ∈ N be a
stochastic process adapted to (Fn)n∈N. Then the random variable

XT : Ω → R , ω 7→ XT (ω) := XT(ω)(ω)

is AT -B(R)-measurable.
Proof.
Let B ∈ B(R) and n ∈ N , then due to finiteness of T , we have

X−1
T (B) =

⋃
j∈N

X−1
j (B) ∩ {T = j} ∈ A

and

X−1
T (B) ∩ {T ≤ n} =

n⋃
j=0

X−1
j (B) ∩ {T = j} ∈ Fn =⇒ X−1

T (B) ∈ AT .
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Martingale Stopping Theorem

Theorem (Martingale Stopping Theorem)
If (Xn)n∈N is a martingale with respect to filtration (Fn)n∈N and if T is a finite
stopping time with respect to (Fn)n∈N , then

EXT = EX1

if one of the following holds:

· (Xn)n∈N is bounded P-almost surely;

· T is bounded P-almost surely; or

· ET < ∞ , and there is a constant c ∈ R such that

E(|Xn+1 − Xn | | Fn) < c for all n ∈ N .

Proof Sketch.
· In all cases we have a finite T . Therefore, XT is AT -B(R)-measurable and in

particular A-B(R)-measurable.

· There is a pointwise limit XT
n → XT .

· By the requirements, one can uniformly bound the expected value (EXT
n )n∈N .

· Due to Lebesgue’s Theorem we obtain limn→∞ EXT
n = EXT .

· By the Stopping Lemma, EXT
n = EX1 holds for all n ∈ N .
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An Application of the Martingale Stopping Theorem

Example (Gambler’s Ruin 3)
We extend the previous example toward a more interesting stopping time. We
consider the same martingale - the random walk (Xn)n∈N in conjunction with the
stopping time

Tb(ω) := min{n ∈ N | Xn(ω) ∈ {`1,−`2} or n = b} for all ω ∈ Ω ,

where b ∈ N≤∞ and `1, `2 ∈ N .

· Clearly, Tb is a stopping time with respect to Fn , as for n 6= b

{Tb = n} = {Xn ∈ {`1,−`2}} ∩

⋂
k<n

{Xk /∈ {`1,−`2}}

 ∈ Fn

and in case n = b < ∞

{Tb = b} =
⋂
k<b

{Xk /∈ {`1,−`2}} ∈ Fb .
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An Application of the Martingale Stopping Theorem

Tb(ω) := min{n ∈ N | Xn(ω) ∈ {`1,−`2} or n = b} for all ω ∈ Ω .

· We prove that P{Tb = ∞} = 0 . For this let n ∈ N , define ` := `1 + `2 and
pick rn := max{k ∈ N | k` ≤ n} . For all b ∈ N≤∞ it follows, that

{Tb ≥ n} ⊆ {T∞ ≥ n} ⊆ {T∞ ≥ rn`}

⊆
⋂

k<rn

{
|X(k+1)` − Xk`| < `

}
=
⋂

k<rn

{
|X(k+1)` − Xk`| = `

}C

=
⋂

0≤k<rn


∣∣∣∣∣∣
(k+1)`∑
j=k`+1

Zj

∣∣∣∣∣∣ = `


C

and therefore

P{Tb ≥ n} ≤ (1 − 1/2`−1)rn n→∞−−−−→ 0 .
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An Application of the Martingale Stopping Theorem

Tb(ω) := min{n ∈ N | Xn(ω) ∈ {`1,−`2} or n = b} for all ω ∈ Ω .

P{Tb ≥ n} n→∞−−−−→ 0 for all b ∈ N≤∞ .

· It remains to show that EXTb = 0 , where b < ∞ . As Tb is bounded, we have

ETb ≤ b < ∞

and due to the fact that

E(|Xn+1 − Xn | | Fn) = E(|Zn+1| | Fn) ≤ E(1 | Fn) = 1 ,

we can apply the Martingale Stopping Theorem. Setting

qb := P(XTb = `1) and wb := P(XTb /∈ {`1,−`2})

we obtain

`1qb − `2(1 − qb) ≤ EXTb = 0 ≤ `1(qb + wb)− `2(1 − qb − wb) .

By the previous derivation, it follows additionally that

0 = lim
b→∞

EXTb = lim
b→∞

`1qb − `2(1 − qb) ⇐⇒ lim
b→∞

qb =
`2

`1 + `2
.
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An Application of the Martingale Stopping Theorem

Figure 3: A realization of s = 40 independent copies
(

XTb,j
k

)
k≤n

of
(

XTb
k

)
k≤n

and the

m-th sample mean q̂b(m) of the corresponding realization of 1{XT = `1} , where
`1 = 10; `2 = 20; m, j ≤ s; 0 � b .
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Wald’s Equation



Wald’s Equation

Theorem (Wald’s Equation)
Let Xn ∈ L1(Ω,A,P),n ∈ N be independent, identically distributed random
variables and let T be a finite stopping time with respect to

(Fn := I(X1,X2, . . . ,Xn))n∈N .

If T has bounded expectation, then

E

( T∑
i=1

Xi

)
= ET · EX1 .

Proof.

· (Zn :=
∑n

j=1(Xj − EXj))n∈N is a martingale with respect to (Fn)n∈N .

· In conjunction with T , the martingale (Zn)n∈N fulfills the third version of the
Martingale Stopping Theorem.

· Due to linearity of the expected value and by the former, we obtain the result.
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Wald’s Equation

· (Zn :=
∑n

j=1(Xj − EXj))n∈N is a martingale with respect to (Fn)n∈N .

Clearly, Zn is Fn-B(R)-measurable and

E|Zn | ≤ E

 n∑
j=1

|Xj |+ E|Xj |

 = 2nEX1 for all n ∈ N .

Also,

E(Zn+1 | Fn) = E (Xn+1 − EXn+1 + Zn | Fn)

= E (Xn+1 | Fn)− EXn+1 + Zn

= Zn for all n ∈ N .
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Wald’s Equation

· In conjuction with T , the martingale (Zn)n∈N fulfills the third version of the
Martingale Stopping Theorem.

We have

E (|Zn+1 − Zn | | Fn) = E (|Xn+1 − EXn+1| | Fn)

= E (|Xn+1 − EXn+1|)

≤ 2E|X1| for all n ∈ N

and as T is finite and ET < ∞ by assumption, the Martingale Stopping
Theorem tells us

EZT = EZ1 .
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Wald’s Equation

· Due to linearity of the expected value and by the former, we obtain the result.

Clearly,
EZ1 = E(X1 − EX1) = EX1 − EX1 = 0 .

Therefore, we have

0 = EZ1 = EZT = E

 T∑
j=1

(Xj − EX1)


= E

 T∑
j=1

Xj

− TEX1


= E

 T∑
j=1

Xj

− ET · EX1 ,

which gives the result.

19



Concentration of Martingales



The Azuma-Hoeffding Inequality

Theorem (Azuma-Hoeffding Inequality)
Let (Xn)n∈N be a martingale with respect to filtration (Fn)n∈N and assume that for
all k ∈ N , there exists ck ∈ R such that |Xk+1 − Xk | ≤ ck .

Then, for all n ∈ N and for all λ > 0 , we have

P (|Xn − X1| ≥ λ) ≤ 2 exp

(
−

λ2

2
∑n−1

k=1 c2
k

)
.

Proof.

· For every α > 0 , there is an upper bound

E
(

eα(Xn−X1)
)
≤ exp

(
α2

2

n−1∑
k=1

c2
k

)
for all n ∈ N .

· By Markov’s Inequality and by subadditivity of P , we therefore obtain a bound

P(|Xn − X1| ≥ λ) ≤ 2 exp

(
α2

2

n−1∑
k=1

c2
k − αλ

)
for all n ∈ N .

· We minimize the upper bound over α > 0 to obtain the result.
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The Azuma-Hoeffding Inequality

· For every α > 0 , there is an upper bound

E
(

eα(Xn−X1)
)
≤ exp

(
α2

2

n−1∑
k=1

c2
k

)
for all n ∈ N .

For all n ∈ N , we define Yn+1 := Xn+1 − Xn and given α > 0 , we divide this
step into the three substeps

� There is an upper bound

eαYn+1 ≤
e−αcn + eαcn

2
+

Yn+1

2cn
(eαcn − e−αcn ) ;

� There is an upper bound

E
(

eαYn+1 | Fn
)
≤ exp

(
(αcn)

2/2
)
; and

� There is an upper bound

E
(

eα(Xn+1−X1)
)
≤ E

(
eα(Xn−X1)

)
exp

(
(αcn)

2/2
)

from which the statement can be concluded by induction.
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The Azuma-Hoeffding Inequality

� There is an upper bound

eαYn+1 ≤
e−αcn + eαcn

2
+

Yn+1

2cn
(eαcn − e−αcn ) ;

By assumption |Yn+1| = |Xn+1 − Xn | ≤ cn , therefore we can find a
convex combination

Yn+1 = −cn
1 − Yn+1/cn

2
+ cn

1 + Yn+1/cn

2
.

Using the convexity of t 7→ eαt , we obtain that

eαYn+1 ≤
1 − Yn+1/cn

2
e−αcn +

1 + Yn+1/cn

2
eαcn

=
e−αcn + eαcn

2
+

Yn+1

2cn
(eαcn − e−αcn ) .
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The Azuma-Hoeffding Inequality

� There is an upper bound

E
(

eαYn+1 | Fn
)
≤ exp

(
(αcn)

2/2
)
;

Note that (Xn)n∈N is a martingale with respect to filtration (Fn)n∈N ,
thus

E (Yn+1 | Fn) = E (Xn+1 − Xn | Fn)

= E (Xn+1 | Fn)− Xn = 0 .

Using this and the previous result, we obtain

E
(

eαYn+1 | Fn
)
≤ E

(
eαcn + e−αcn

2
+

Yn+1

2cn
(eαcn − e−αcn )

∣∣ Fn

)
=

eαcn + e−αcn

2
= 1

2

∞∑
j=0

(αcn)j + (−αcn)j

j!

=
∞∑

j=0

(αcn)2j

(2j)!
≤ exp

(
(αcn)

2/2
)
.
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The Azuma-Hoeffding Inequality

� There is an upper bound

E
(

eα(Xn+1−X1)
)
≤ E

(
eα(Xn−X1)

)
exp

(
(αcn)

2/2
)
;

From the previous statement and by the tower property it follows that

E
(

eα(Xn+1−X1)
)
= E

(
E
(

eα(Xn−X1)eαYn+1
∣∣ Fn

))
= E

(
eα(Xn−X1)E

(
eαYn+1

∣∣ Fn
))

≤ E
(

eα(Xn−X1)
)
exp

(
(αcn)

2/2
)
.

By induction and the fact that eα(X1−X1) = 1 , we obtain

E
(

eα(Xn−X1)
)
≤ exp

(
α2

2

n−1∑
k=1

c2
k

)
for all n ∈ N .
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The Azuma-Hoeffding Inequality

· By Markov’s Inequality and by subadditivity of P , we therefore obtain a
bound

P(|Xn − X1| ≥ λ) ≤ 2 exp

(
α2

2

n−1∑
k=1

c2
k − αλ

)
for all n ∈ N .

Using the previous result, we have for all α > 0 , for all λ > 0 , and for all
n ∈ N that

P(Xn − X1 ≥ λ) = P
(

eα(Xn−X1) ≥ eαλ
)

≤
E
(
eα(Xn−X1)

)
eαλ

≤ exp

(
α2

n−1∑
k=1

c2
k/2 − αλ

)
.

By the same argument applied to (−Xn)n∈N we obtain the bound

P(−Xn + X1 ≥ λ) ≤ exp

(
α2

n−1∑
k=1

c2
k/2 − αλ

)
.

Subadditivity of P then yields the result.
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The Azuma-Hoeffding Inequality

· We minimize the upper bound over α > 0 to obtain the result.

For all n ∈ N and λ > 0 , minimizing the upper bound of

P(|Xn − X1| ≥ λ) ≤ 2 exp

(
α2

2

n−1∑
k=1

c2
k − αλ

)
over α > 0 is equivalent to minimizing the function

α 7−→ α2

2

n−1∑
k=1

c2
k − αλ .

The minimum of the above function is found in its only local minimum and as
the unique root

α

n−1∑
k=1

c2
k − λ = 0 ⇐⇒ α =

λ∑n−1
k=1 c2

k
.

of its derivative with respect to α . Plugging the minimum into the exponent
of the above bound, we obtain

α2

2

n−1∑
k=1

c2
k − αλ = 1

2
λ2∑n−1

k=1 c2
k
−

λ2∑n−1
k=1 c2

k
= −

λ2

2
∑n−1

k=1 c2
k

and conclude the result.
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An Application of the Azuma-Hoeffding Inequality

Definition (Graphs)
Define a dense graph Gm := (Vm ,Em) , where m ∈ N ,

· the set Vm := {vj | j ∈ N , j ≤ m} is called vertices and

· the set
Em := {e : {0, 1} → Vm | e(0) 6= e(1)} /∼ ,

where
e ∼ e′ : ⇐⇒ e{0, 1} = e′{0, 1} ,

is called edges.

We say G := (V ,E) is a graph k-subordinate to Gm if

· V = Vm ,

· E ⊆ Em , and

· |E| = k .

We write Gk
m := {G | G is k-subordinate to Gm}) . Further, we call a vertice v ∈ V

isolated if
v /∈

⋃
e∈E

e{0, 1} .
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An Application of the Azuma-Hoeffding Inequality

Example (Concentration of the Number of Isolated Vertices)
We will now take a look at random variable

G ∼ Unif(Gk
m) .

Clearly, as the range of G is finite, we can consider the associated power set as a
σ-algebra. Of special interest to us are the number of isolated vertices iso(G) ,
constructed with the map{

iso : Gk
m −→ N[0,m]

(V ,E) 7−→ |{v ∈ V | v is isolated}| .

We will now

· Compute E iso(G) and

· Prove that P{|iso(G)− E iso(G)| ≥ λ} ≤ 2 exp
(
−λ2

8k

)
.
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An Application of the Azuma-Hoeffding Inequality

Figure 4: A realization of G ∼ Unif(Gk
m), where m = k = 100 .
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An Application of the Azuma-Hoeffding Inequality

· Compute E iso(G) ;

We have the identity

E iso(G) = E
∑
v∈V

1{v is isolated}

=
∑
v∈V

E1{v is isolated}

= |V | · P{v1 is isolated} .

Clearly, |V | = |Vm | = m . As the random variable G takes exactly the values
of every graph containing k edges, we have

|Gk
m | =

((m
2
)

k

)
.

For the probability of a vertice being isolated we count the number of graphs
that fulfill this property and obtain the associated probability by division

P{v1 is isolated} =
|Gk

m−1|
|Gk

m |
.
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An Application of the Azuma-Hoeffding Inequality

· Prove that P{|iso(G)− E iso(G)| ≥ λ} ≤ 2 exp
(
−λ2

8k

)
.

This follows, as we can

� Build an edge exposure martingale (Xn)n∈N of iso(G) with respect to G ;
� Bound |Xn+1 − Xn | ≤ 2 for all n ∈ N ; and
� Show that the result can be obtained by applying the Azuma-Hoeffding

Inequality to the martingale (Xn)n∈N .
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An Application of the Azuma-Hoeffding Inequality

� Build an edge exposure martingale (Xn)n∈N of iso(G) with respect to G ;

Consider an enumeration (e)i≤j , j =
m(m−1)

2 of the edges Em of a
dense graph with m vertices. We will now define a random variable
describing the vertices that are connected to ei in the random graph G .
For 1 ≤ i ≤ j , we define{

ẽi : Gk
n −→ 2V

(V ,E) 7−→ ei{0, 1} if ei ∈ E , ∅ else .

and therefore ẽi(G) describes just that.
Now for all n ∈ N , we define Fn := I(ẽ1(G), . . . , ẽn(G)) and

X0 := E iso(G) , Xn := E(iso(G) | Fn) .

Clearly, (Xn)n∈N≥0 is a martingale as for all n ∈ N≥0 , we have

E(Xn+1 | Fn) = E(E(iso(G) | Fn+1) | Fn)

= E(iso(G) | Fn) = Xn .
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An Application of the Azuma-Hoeffding Inequality

� Bound |Xn+1 − Xn | ≤ 2 for all n ∈ N ;

By definition, we have for G = (V ,E) ∼ Unif(Gk
m) , that

iso(G) =
∣∣∣(⋃e∈E e{0, 1}

)C
∣∣∣ = ∣∣∣∣(⋃i≤j ẽi(G)

)C
∣∣∣∣

≤

∣∣∣∣∣∣
(⋃

i≤j
i 6=n+1

ẽi(G)

)C
∣∣∣∣∣∣ .

Therefore, for all n ∈ N , we obtain

Xn+1 − Xn = E(iso(G) | Fn+1)− E(iso(G) | Fn)

≤ E

(∣∣∣∣∣⋂ i≤j
i 6=n+1

ẽi(G)C

∣∣∣∣∣
∣∣∣∣ Fn+1

)
− E(iso(G) | Fn)

= E

(∣∣∣∣∣⋂ i≤j
i 6=n+1

ẽi(G)C

∣∣∣∣∣− iso(G)

∣∣∣∣ Fn

)
≤ E (|ẽn+1(G)| | Fn)

≤ 2 .

By a similar derivation we get Xn+1 − Xn ≥ −2 and conclude the result.

33



An Application of the Azuma-Hoeffding Inequality

� Show that the result can be obtained by applying the Azuma-Hoeffding
Inequality to the martingale (Xn)n∈N .

Clearly, Xn = iso(G) if n ≥ m(m−1)
2 and X0 = E iso(G) . By the fact

that G has only k edges and by the Azuma-Hoeffding Inequality, we get

P{|iso(G)− E iso(G)| ≥ λ} ≤ 2 exp

(
−

λ2

2
∑m(m−1)/2

i=1 c2
i

)

= 2 exp

(
−
λ2

8k

)
.
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An Application of the Azuma-Hoeffding Inequality

Figure 5: An estimation of λ 7→ P{|iso(G) − E iso(G)| ≥ λ} , created from 1000
independent samples of Unif(Gk

m) , and the associated bounds (dash-dotted) for
m = 500 and different values of k .
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Thank You!

Find the full source-code of this presentation on my Github soon:

github.com/NiMlr

The content of this presentation is mainly based on and influenced by:
M. Mitzenmacher and E. Upfal (2017). Probability and Computing:
Randomization and Probabilistic Techniques in Algorithms and Data Analysis.
Cambridge University Press. url:
https://books.google.de/books?id=E9UlDwAAQBAJ
N. Henze (2016). Vorlesung Wahrscheinlichkeitstheorie. KIT Bibliothek. url:
https://publikationen.bibliothek.kit.edu/1000113898

The source-code to generate the visualizations was written in Python 3
and makes use of the software:

P. Virtanen et al. (2020). “SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python”. In: Nature Methods 17, pp. 261–272
F. Pedregosa et al. (2011). “Scikit-learn: Machine Learning in Python”. In:
Journal of Machine Learning Research 12, pp. 2825–2830
A. Hagberg, D. Schult, and P. Swart (2008). “Exploring Network Structure,
Dynamics, and Function using NetworkX”. In: Proceedings of the 7th Python in
Science Conference. Pasadena, CA USA, pp. 11–15
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