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Conditional Expectations and Martingales



Conditional Expectations

Definition (Conditional Expectation)
Let X € L'(22, A,P) and F C A be a o-algebra over 2. The conditional

expectation of X with respect to F is a F-B(R)-measurable random variable
X7 (Q,F) — (R,B(R)) for which we have

/XdIP’:/XFd]P’u_- for all F € F. (CE)
F F

Remark
Let X € LY(Q, A,P) and Y : (Q, A) — (B, E) measurable. We will use the

abbreviations B(X | Y) :=E(X | Y~1(£))) :== XY (&)



Existence & Uniqueness of Conditional Expectations

Theorem (Existence & Uniqueness of Conditional Expectations)
Let X € LY(Q, A,P) and F C A be a o-algebra over ).

(a) If X7, Y7 € LY(Q, F,P) satisfy
E(X1p)=E(X 1) =E(Y T 1p) for all F € F,
then X7 = Y7 P-almost surely.

(b) A random variable X7 : (Q,F) — (R, B(R)) fulfilling (CE) exists.

Proof Sketch.
- The positive and negative part of X are densities with respect to P and thus
each induce a measure on (2, F).

- As both of these measures are absolutely continuous with respect to Pz, by
the Radon-Nikodym-Theorem there exist densities with respect to P|x .

- Subtracting these densities, one obtains X7 .
- X7 is unique as any absolute difference of two candidates is integrable and

must almost surely be zero due to (CE). O



Martingales

Definition (Discrete Filtration)
Let (€2, A) be a measurable space. A sequence F; C Fa C ... of sub o-fields of A

over 2 is called a filtration over (2, A).

Definition (Discrete Martingale)
Let (2, A,P) be a probability space and (Fn)nen be a filtration over (2, A). The

random variables (X,),en are called a martingale with respect to (Fp)nen <=

(a) X, € LY(Q, Fpn,P) and
(b) E(Xn+t1 | Fn) = X P-almost surely for all n € N.



A Simple Martingale

Example (Gambler’s Ruin 1)
Let (Zn)nen be i.i.d. random variables such that the associated probability measure

1s

01+
Py, = —.

Zy 2

We define
n
Xy = ZZ]- for all n € N.

j=1

(Xn)nen is a martingale with respect to o-algebra F, :=Z(Z1,...,Zy,), as

(a) E|Xn| = nE|Zi| =n and X, is F,-B(R)-measurable and
(b) IE(Xn+1 | -Fn) = E(Zn+l | -7:71,) + Xn = ]EZTL+1 + Xn = Xn.

ot



A Simple Martingale
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Figure 1: A realization of 50 independent copies of (Xj)r<n, where n =7 - 10%.



Stopping Times



The Stopping Lemma

Lemma (Stopping Lemma)
For a martingale (Xn)nen with respect to filtration (Fpn)nen we have

EX, =EX; for alln € N.

Proof.
Due to property (b) of martingales we have
E(Xnt1 | Fn) = X P-almost surely for all n € N
= E(E(Xp41 | Fn)) =EX, for all n € N

— EX,+1 =EX, forall n € N.



An Application of the Stopping Lemma

Example (Gambler’s Ruin 2)
We consider the simple example of a martingale we encountered in the previous
section — the random walk (X,,),en. By the stopping lemma we conclude

EX, =EX; =EZ =0forall n e N,
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Figure 2: A realization of s = 40 independent copies (Xi)kgn of (Xi)k<n and their
m-th sample mean at n, where n = 10%,m < s,j < s.



Stopped Processes

Definition (Stopping Time)
Let (Fn)nen be a filtration over a probability space (2,.A4,P). A random variable
T:(Q,AP) = (Neo,2'<2) such that

{T<n}eF,forallneN

is called a stopping time with respect to (Fp)nen -

Remark
In the above setting,

T is a stopping time <= {T =n} € F, for alln € N.

Definition (Stopped Process)
Let X, : (2, A,P) — (E,€),n € N be a process adapted to filtration (F,),en over

(Q,A) and let T: (2, A,P) = (N<, oM< ) be a stopping time with respect to
(Fn)nen - We call

(X1 ,en, where XTI (w) := Xinin{ T(w),n} (W) forallw € Q,n € N

the stopped process.



Stopped Processes

Definition (c-algebra of the T-past)
Let T: (2, A,P) = (Ncoo, 2N<oc) be a stopping time with respect to filtration

(Fn)nen over (©, A). We call
Ar:={Ac A| AN{T < n} € F, for all n € N}

the o-algebra of the T-past.

Theorem
Let T: (2, A,P) = (N<oo,25%) be finite and a stopping time with respect to

filtration (Fpn)nen over (2, A). Let further X, : (2, A,P) = (R,B(R)),n € N be a
stochastic process adapted to (Fpn)nen. Then the random variable

Xr:Q =R, w— Xp(w) = XT(w)(w)

is Ap-B(R)-measurable.

Proof.

Let B € B(R) and n € N, then due to finiteness of T, we have
Xp'B) =X B n{T=jteA

and jeN

X;N(B)N{T <n} = CJ XM B)N{T=j} e Fn = X;'(B) € Ar.

j=0 O

10



Martingale Stopping Theorem

Theorem (Martingale Stopping Theorem)
If (Xn)nen is a martingale with respect to filtration (Fpn)nen and if T is a finite

stopping time with respect to (Fn)nen , then
EXp = EX;
if one of the following holds:
- (Xn)nen is bounded P-almost surely;
T is bounded P-almost surely; or

- ET < oo, and there is a constant ¢ € R such that
E(| X1 — Xnl | Fn) < ¢ for alln € N.

Proof Sketch.
- In all cases we have a finite T'. Therefore, X is Ap-B(R)-measurable and in
particular A-B(R)-measurable.

- There is a pointwise limit X,J — X7 .
- By the requirements, one can uniformly bound the expected value (EX,T),cx -
- Due to Lebesgue’s Theorem we obtain limy, s~ IEXE =EXp.

- By the Stopping Lemma, EX,” = EX; holds for all n € N.

11



An Application of the Martingale Stopping Theorem

Example (Gambler’s Ruin 3)
We extend the previous example toward a more interesting stopping time. We

consider the same martingale - the random walk (X,),en in conjunction with the
stopping time
T(w) :=min{n € N | X,,(w) € {1, L2} or n= b} for all w € Q,
where b € Nc and £1,02 € N.
- Clearly, T" is a stopping time with respect to F, , as for n # b
{T"=n} = {Xn € {lr,~}}n | ({Xk & {1, ~L2}} | € Fn
k<n

and in case n = b < 0o

{TP =0} = ({Xp & {1, —L2}} € F.

k<b

12



An Application of the Martingale Stopping Theorem

T(w) := min{n € N | X, (w) € {f1, 2} or n = b} for all w € Q.

- We prove that P{T? = co} = 0. For this let n € N, define £ := £; + f5 and
pick 7, := max{k € N | kf < n}. For all b € Nc, it follows, that

{TY > n} C{T™® >n} C{T>® > r,l}

C N {IXGs1ye — Xnel < £}
k<ry

= () {Xs1ye — Xuel = €€

k<rp

(k+1)¢ c
- n {2
0<k<ry | |j=kt+1

and therefore

P{T® > n} < (1 —1/2¢-1)™ 2% 0,

13



An Application of the Martingale Stopping Theorem

T(w) := min{n € N | Xp(w) € {f1, 2} or n = b} for all w € Q.

P{T® > n} "= 0 for all b € Neo, -
- It remains to show that EX, = 0, where b < co. As T? is bounded, we have
ET’<b<oo
and due to the fact that
E(|Xnt1 = Xal | Fu) = E(|Znga| | Fn) SE( | Fn) =1,
we can apply the Martingale Stopping Theorem. Setting
gy :=P(Xp =01) and  wy :=P(Xp & {1, —l2})
we obtain
ligy —L2(1 — qp) SEXq =0 < li(gp +wp) — La(l — gy — wp) -
By the previous derivation, it follows additionally that

Lo
O+ 0y

0= lim EXT}) = lim ¢1qp — Zg(l — qb) <~ lim ¢, =
b— o0 b— o0 b—ro0
14



An Application of the Martingale Stopping Theorem
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Figure 3: A realization of s = 40 independent copies (Xka’j> - of (Xka) - and the
k<n k<n
m-th sample mean ¢,(m) of the corresponding realization of 1{X¢ = ¢1}, where

01 =10;02 =20;m,j < 50K b.
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Wald’s Equation




Wald’s Equation

Theorem (Wald’s Equation)
Let X, € L' (Q, A, P),n € N be independent, identically distributed random

variables and let T be a finite stopping time with respect to
(]:" = Z(X17 X27 CERN} X’"«))nEN .

If T has bounded expectation, then

T
E <Zx> =ET-EX;.
=1

Proof.
« (Zn =307 (Xj — EXj))nen is a martingale with respect to (Fn)nen -

- In conjunction with 7', the martingale (Z,)nen fulfills the third version of the
Martingale Stopping Theorem.

- Due to linearity of the expected value and by the former, we obtain the result.

16



Wald’s Equation

(Zn = 3271 (Xj — EXj))nen is a martingale with respect to (Fn)nen -

Clearly, Z, is Fn-B(R)-measurable and

n
E|Za| <E | Y IXj| +E|X;| | =2nEX; forall n € N.
j=1
Also,
E(Zns1 | Fn) = E(Xni1 — EXpr1 + Zn | Fn)
= E(Xn+1 ‘ -7'—11) —EXpt1+ 2Zn
= Z, for all n € N.

17



Wald’s Equation

In conjuction with 7', the martingale (Zy)nen fulfills the third version of the
Martingale Stopping Theorem.

‘We have

E(|Zp+1 — Zn| | Fn) = ]E(‘XnJrl - EX7L+1| | Fn)
=E (| Xnt1 — EXnal)
< 2E|X;| for all n € N

and as 7 is finite and ET < oo by assumption, the Martingale Stopping
Theorem tells us

EZr =EZ; .

18



Wald’s Equation

Due to linearity of the expected value and by the former, we obtain the result.

Clearly,
EZ =E(X;1 —EX;) =EX; —EX; =0.

Therefore, we have

T
0=EZ =EZp =E [ > (X;—EXy)
j=1

=E X; | - TEX,

o

<
Il
-

Il
M-

X;| —ET-EX,
1

.
Il

which gives the result.

19



Concentration of Martingales




The Azuma-Hoeffding Inequality

Theorem (Azuma-Hoeffding Inequality)
Let (Xn)nen be a martingale with respect to filtration (Fn)nen and assume that for

all k € N, there exists ¢, € R such that | X1 — Xi| < ¢ .
Then, for all n € N and for all X > 0, we have
22
P(|Xn — X1| > A) < 2exp <22:Z:110,%> .
Proof.

- For every a > 0, there is an upper bound

n—1
E (CQ(X"7X1>) < exp <a22 Z c%) for all n € N.
k=1

- By Markov’s Inequality and by subadditivity of P, we therefore obtain a bound
5 n—1
P(|Xn — X1| > X\) < 2exp (‘12 > et —a)\> for all n € N.
k=1

- We minimize the upper bound over a > 0 to obtain the result.

20



The Azuma-Hoeffding Inequality

For every a > 0, there is an upper bound

n—1
E (ea(Xn—X1)) < exp ("‘22 Z c%) for all n € N.
k=1

For all n € N, we define Y, 1 := X,,41 — Xp and given o > 0, we divide this
step into the three substeps

¢ There is an upper bound

e Ynt1 <

—aq ac
€ vt et Y7L+1 acy —acy
(e —e ™)
2 2¢cp

¢ There is an upper bound
E (ea Yot | ]—'n> < exp ((Cwn)2/2) ; and
¢ There is an upper bound
E (eo‘(x"+1_xl)> <E (ea(X"_X1)> exp ((0071)2/2)
from which the statement can be concluded by induction.

21



The Azuma-Hoeffding Inequality

& There is an upper bound

o Yait < e~ %Cn | gcn Y (een _ g=aen).
- 2 D@y
By assumption |Y,4+1| = |X,+1 — Xn| < cp, therefore we can find a
convex combination
1— Yati/e, 14 Yoti/e,
Yn+1 = —Cn 2 / + cn 2 / .

Using the convexity of t — e, we obtain that

e Yny1 < 1— Yn+1/cn e—aen 4 1+ Yn+1/cn e
- 2 2
e*acn + eacn

Yn+1 (eacn _ efacn) )
2 2¢cp

22



The Azuma-Hoeffding Inequality

¢ There is an upper bound

E (eO‘Y"‘H | fn) < exp ((O‘Cn)2/2) :

Note that (Xp)nen is a martingale with respect to filtration (Fp)nen ,
thus

E(Yni1 | Fn) =E(Xnp1 — X | Fn)
= ]E(Xn+1 ‘ -Fn) - Xn=0.

Using this and the previous result, we obtain

Qcp —Qcy Y,
E (anTL+1 |-7:n> S E e +e + n+1 (eacn o efac") | -Fn
2 2cp

exen 4 e~ *n _1 f: (aen)! + (—acy)
2 2 = 4!

= (O‘Cn)Qj 2
= E @) <exp ((aen)?/2) .
— !

23



The Azuma-Hoeffding Inequality

¢ There is an upper bound

E (eO‘(X"'H*Xl)) <E (ea<X"7X1)) exp ((acn)2/2) g

From the previous statement and by the tower property it follows that

E (ea(XnH*Xﬂ) —E (E <ea(erX1)ea Yot1 | ]:n>>
=E <ea(x"7X1)]E (ea Ynt1 | fn>>
<E (ea(X"_Xl)) exp ((aCn)2/2) .

By induction and the fact that e*(X1=X1) = 1 we obtain

]E(ea(X"_Xl)) < exp <a22 C%) for all n € N..

3
|
—

24



The Azuma-Hoeffding Inequality

By Markov’s Inequality and by subadditivity of PP, we therefore obtain a
bound

n—1
P(|Xn — X1| > A) < 2exp ("‘22 Z 2 —aA) for all n € N.
k=1

Using the previous result, we have for all a > 0, for all A > 0, and for all
n € N that
P(Xp— X1 >\) =P <e“<X"—X1) > e(“>

- E (ea(XT;le))

eﬂt
n—1
< exp <o¢2 Z /2 — oz)\> .
k=1
By the same argument applied to (—X;),en we obtain the bound
n—1
P(—Xn + X1 > A) < exp <a2 > /2 — a)\> .
k=1

Subadditivity of P then yields the result.



The Azuma-Hoeffding Inequality
We minimize the upper bound over o > 0 to obtain the result.

For all n € N and A > 0, minimizing the upper bound of

n—1
2
2 <20 (5 5 )

k=1

over a > 0 is equivalent to minimizing the function
n—1

2
ar— & Z c% — aA.

k=1

The minimum of the above function is found in its only local minimum and as
the unique root

n—1
achz—)\:O “— a=
k=1

of its derivative with respect to av. Plugging the minimum into the exponent
of the above bound, we obtain

n—1 2 2 2

U TN D

2 z: k -2 n—1 92 n—1 92 n—1 92
k=1 k=1 Gk 2he Ch 23021

and conclude the result.

26



An Application of the Azuma-Hoeffding Inequality

Definition (Graphs)
Define a dense graph Gy, := (Vp, Ep,), where m € N,
- the set Vi :={v; | j € N, j < m} is called vertices and

- the set
B 1= {e 40,1} = Vin | e(0) # e(1)} /.. |
where
e~e€ <= ¢{0,1} = €¢{0,1},

is called edges.

We say G := (V,E) is a graph k-subordinate to Gy, if

V= va
- EC E;, and
- |El=k.

We write G, := {G'| G is k-subordinate to Gy, }). Further, we call a vertice v € V
isolated if

v ¢ U e{0,1}.

eck

27



An Application of the Azuma-Hoeffding Inequality

Example (Concentration of the Number of Isolated Vertices)
We will now take a look at random variable

G ~ Unif(GF).

Clearly, as the range of G is finite, we can consider the associated power set as a
o-algebra. Of special interest to us are the number of isolated vertices iso(G) ,
constructed with the map

iso : gfn — N[O,m]
(V,E) — |{ve V| vis isolated}|.

We will now

- Compute Eiso(G) and
- Prove that P{|iso(G) — Eiso(G)| > A} < 2exp <7g‘—}2€) .

28



An Application of the Azuma-Hoeffding Inequality
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Figure 4: A realization of G ~ Unif(gfn), where m = k = 100.



An Application of the Azuma-Hoeffding Inequality

Compute Eiso(G);

We have the identity
Eiso(G) = E Z 1{wv is isolated }
veV
= Z E 1{v is isolated}
veV

= |V|-P{uv is isolated} .
Clearly, | V| = | Vin| = m. As the random variable G takes exactly the values
of every graph containing k edges, we have

9= (7).

For the probability of a vertice being isolated we count the number of graphs
that fulfill this property and obtain the associated probability by division

k
Igmfl

(%4

P{v; is isolated} =

30



An Application of the Azuma-Hoeffding Inequality

Prove that P{|iso(G) — Eiso(G)| > A\} < 2exp (—g—z) .

This follows, as we can
¢ Build an edge exposure martingale (X, )nen of iso(G) with respect to G;
o Bound | X,+1 — X,| <2 for all n € N; and
¢ Show that the result can be obtained by applying the Azuma-Hoeffding
Inequality to the martingale (Xp)nen -

31



An Application of the Azuma-Hoeffding Inequality

¢ Build an edge exposure martingale (X,)nen of iso(G) with respect to G;

Consider an enumeration (€);<j, j = w of the edges E,, of a
dense graph with m vertices. We will now define a random variable
describing the vertices that are connected to e; in the random graph G .
For 1 < ¢ < j, we define

éi:gfL*)ZV
(V,E) — €;{0,1} if e; € E, 0 else.

and therefore &;(G) describes just that.
Now for all n € N, we define F,, :=Z(e1(G),...,en(G)) and

Xo :=Eiso(GQ), Xp :=E(iso(G) | Fn).
Clearly, (Xn)nens, is a martingale as for all n € Nx¢, we have

E(Xnt1 | Fn) = E(E(iso(G) | Fnt1) | Fn)
= E(iso(G) | Fn) = Xn.

32



An Application of the Azuma-Hoeffding Inequality

¢ Bound |Xp4+1 — Xn| < 2 for all n € N;

By definition, we have for G = (V, E) ~ Unif(GE), that

150(6) = | (Uscp e00.1) ] = | (Ui () |

c
<U i<j éi(G)> .
i#En+1

Therefore, for all n € N, we obtain

<

Xnt1 — Xn = E(is0o(G) | Fng1) — E(iso(G) | Fn)

<

=E <’ﬂ i< éz’(G)C’ —iso(G) ' fn) <E([ént1(G)] | Fn)
i#En+1

N i<; &(6)°¢
i#En+1

‘ Fn+1> — E(iso(G) | Fn)

<2,

By a similar derivation we get X;,4+1 — X5, > —2 and conclude the result.
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An Application of the Azuma-Hoeffding Inequality

& Show that the result can be obtained by applying the Azuma-Hoeffding
Inequality to the martingale (Xp)nen -

Clearly, X, = iso(G) if n > W and Xy = Eiso(G). By the fact
that G has only k edges and by the Azuma-Hoeffding Inequality, we get

)\2
P{liso(G) —Eiso(G)| > A\} < 2exp | ———F——5—
) Dt

)\2
=2 2.
exp( Sk)

34



An Application of the Azuma-Hoeffding Inequality
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Figure 5: An estimation of A — P{|iso(G) — Eiso(G)| > A}, created from 1000
independent samples of Unif(GF), and the associated bounds (dash-dotted) for
m = 500 and different values of k.



Thank You!

Find the full source-code of this presentation on my Github soon:

github.com/NiMlr

The content of this presentation is mainly based on and influenced by:

Bd M. Mitzenmacher and E. Upfal (2017). Probability and Computing:
Randomization and Probabilistic Techniques in Algorithms and Data Analysis.
Cambridge University Press. URL:
https://books.google.de/books?id=EQUTDwWAAQBAJ

fJ N. Henze (2016). Vorlesung Wahrscheinlichkeitstheorie. KIT Bibliothek. URL:
https://publikationen.bibliothek.kit.edu/1000113898

The source-code to generate the visualizations was written in Python &
and makes use of the software:

€30 P. Virtanen et al. (2020). “SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python”. In: Nature Methods 17, pp. 261-272

@Q F. Pedregosa et al. (2011). “Scikit-learn: Machine Learning in Python”. In:
Journal of Machine Learning Research 12, pp. 2825-2830

fa A Hagberg, D. Schult, and P. Swart (2008). “Exploring Network Structure,
Dynamics, and Function using NetworkX”. In: Proceedings of the 7th Python in
Science Conference. Pasadena, CA USA, pp. 11-15
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