Seminar on Probability and Computer Science

An Introduction to Martingales and Their Application

Nils Müller Bochum, August 1, 2020

Table of Contents

- 1. Conditional Expectations and Martingales Fundamental Concepts A Simple Martingale
- 2. Stopping Times
	- The Stopping Lemma
	- An Application of the Stopping Lemma
	- Fundamental Concepts
	- The Martingale Stopping Theorem
	- An Application of the Martingale Stopping Theorem
- [3. Wald's Equa](#page-2-0)tion
- [4. C](#page-6-0)[o](#page-3-0)ncentration of Martingales
	- [T](#page-9-0)he Azuma-Hoeffding Inequality
	- [An](#page-11-0) [Applic](#page-10-0)ation of the Azuma-Hoeffding Inequality

Conditional Expectations and Martingales

Definition (Conditional Expectation)

Let $X \in L^1(\Omega, \mathcal{A}, \mathbb{P})$ and $\mathcal{F} \subseteq \mathcal{A}$ be a σ -algebra over Ω . The conditional expectation of *X* with respect to $\mathcal F$ is a $\mathcal F$ - $\mathcal B(\mathbb R)$ -measurable random variable $X^{\mathcal{F}}:(\Omega,\mathcal{F})\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$ for which we have

$$
\int_{F} X d\mathbb{P} = \int_{F} X^{\mathcal{F}} d\mathbb{P}_{|\mathcal{F}} \text{ for all } F \in \mathcal{F}.
$$
 (CE)

Remark

Let $X \in L^1(\Omega, \mathcal{A}, \mathbb{P})$ and $Y : (\Omega, \mathcal{A}) \to (E, \mathcal{E})$ *measurable. We will use the* $abbreviations \mathbb{E}(X | Y) := \mathbb{E}(X | Y^{-1}(\mathcal{E}))) := X^{Y^{-1}(\mathcal{E})}.$

Existence & Uniqueness of Conditional Expectations

Theorem (Existence & Uniqueness of Conditional Expectations) Let $X \in L^1(\Omega, \mathcal{A}, \mathbb{P})$ and $\mathcal{F} \subseteq \mathcal{A}$ be a σ -algebra over Ω .

(a) If $X^{\mathcal{F}}$, $Y^{\mathcal{F}} \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ *satisfy*

 $\mathbb{E}(X \mathbb{1}_F) = \mathbb{E}(X^{\mathcal{F}} \mathbb{1}_F) = \mathbb{E}(Y^{\mathcal{F}} \mathbb{1}_F)$ for all $F \in \mathcal{F}$,

then $X^{\mathcal{F}} = Y^{\mathcal{F}}$ P-almost surely.

(b) A random variable $X^{\mathcal{F}} : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ *fulfilling (CE) exists.*

Proof Sketch.

- \cdot The positive and negative part of X are densities with respect to $\mathbb P$ and thus each induce a measure on (Ω, \mathcal{F}) .
- · As both of these measures are absolutely continuous with respect to $\mathbb{P}_{\mid \mathcal{F}}$, by the Radon-Nikodym-Theorem there exist densities with respect to $\mathbb{P}_{|\mathcal{F}}$.
- · Subtracting these densities, one obtains *X*^F .
- \cdot $X^{\mathcal{F}}$ is unique as any absolute difference of two candidates is integrable and must almost surely be zero due to (CE) . \Box

Martingales

Definition (Discrete Filtration)

Let (Ω, \mathcal{A}) be a measurable space. A sequence $\mathcal{F}_1 \subseteq \mathcal{F}_2 \subseteq \ldots$ of sub σ -fields of \mathcal{A} over $Ω$ is called a filtration over $(Ω, A)$.

Definition (Discrete Martingale)

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $(\mathcal{F}_n)_{n \in \mathbb{N}}$ be a filtration over (Ω, \mathcal{A}) . The random variables $(X_n)_{n\in\mathbb{N}}$ are called a martingale with respect to $(\mathcal{F}_n)_{n\in\mathbb{N}}$: \Longleftrightarrow

(a)
$$
X_n \in L^1(\Omega, \mathcal{F}_n, \mathbb{P})
$$
 and

(b) $\mathbb{E}(X_{n+1} | \mathcal{F}_n) = X_n$ P-almost surely for all $n \in \mathbb{N}$.

A Simple Martingale

Example (Gambler's Ruin 1)

Let $(Z_n)_{n\in\mathbb{N}}$ be i.i.d. random variables such that the associated probability measure is

$$
\mathbb{P}_{Z_1} = \frac{\delta_1 + \delta_{-1}}{2}
$$

.

We define

$$
X_n := \sum_{j=1}^n Z_j \text{ for all } n \in \mathbb{N}.
$$

 $(X_n)_{n\in\mathbb{N}}$ is a martingale with respect to σ -algebra $\mathcal{F}_n := \mathcal{I}(Z_1, \ldots, Z_n)$, as

- (a) $\mathbb{E}|X_n| = n\mathbb{E}|Z_1| = n$ and X_n is $\mathcal{F}_n\text{-}\mathcal{B}(\mathbb{R})$ -measurable and
- (b) $\mathbb{E}(X_{n+1} | \mathcal{F}_n) = \mathbb{E}(Z_{n+1} | \mathcal{F}_n) + X_n = \mathbb{E}Z_{n+1} + X_n = X_n$.

A Simple Martingale

Figure 1: A realization of 50 independent copies of $(X_k)_{k \le n}$, where $n = 7 \cdot 10^4$.

Stopping Times

The Stopping Lemma

Lemma (Stopping Lemma) For a martingale $(X_n)_{n \in \mathbb{N}}$ with respect to filtration $(\mathcal{F}_n)_{n \in \mathbb{N}}$ we have

 $\mathbb{E}X_n = \mathbb{E}X_1$ *for all* $n \in \mathbb{N}$.

Proof.

Due to property (b) of martingales we have

$$
\mathbb{E}(X_{n+1} | \mathcal{F}_n) = X_n \qquad \qquad \mathbb{P}\text{-almost surely for all } n \in \mathbb{N}
$$

\n
$$
\implies \mathbb{E}(\mathbb{E}(X_{n+1} | \mathcal{F}_n)) = \mathbb{E}X_n \qquad \text{for all } n \in \mathbb{N}
$$

\n
$$
\iff \mathbb{E}X_{n+1} = \mathbb{E}X_n \qquad \text{for all } n \in \mathbb{N}.
$$

 \Box

An Application of the Stopping Lemma

Example (Gambler's Ruin 2)

We consider the simple example of a martingale we encountered in the previous section – the random walk $(X_n)_{n\in\mathbb{N}}$. By the stopping lemma we conclude

> 100 50 $X_{k}(\omega)$ -50 $-100\,$ 250 θ 500 750 1000 \boldsymbol{k} 30 $\frac{1}{\pi} \sum_{j=1}^{m} X_{n}^{j}(\omega)$
 $=$ $\frac{15}{\pi}$ $-30\,$ 20 $30[°]$ $\overline{0}$ 10 40 \overline{m}

 $\mathbb{E}X_n = \mathbb{E}X_1 = \mathbb{E}Z_1 = 0$ for all $n \in \mathbb{N}$.

Figure 2: A realization of $s = 40$ independent copies (X_k^j) $\binom{J}{k}$ *k*≤*n*</sub> of (X_k) _{*k*≤*n*} and their *m*-th sample mean at *n*, where $n = 10^3$, $m \leq s, j \leq s$.

Stopped Processes

Definition (Stopping Time)

Let $(\mathcal{F}_n)_{n\in\mathbb{N}}$ be a filtration over a probability space $(\Omega, \mathcal{A}, \mathbb{P})$. A random variable $T: (\Omega, \mathcal{A}, \mathbb{P}) \to (\mathbb{N}_{\leq \infty}, 2^{\mathbb{N}_{\leq \infty}})$ such that

 ${T \leq n} \in \mathcal{F}_n$ for all $n \in \mathbb{N}$

is called a stopping time with respect to $(\mathcal{F}_n)_{n\in\mathbb{N}}$.

Remark

In the above setting,

T is a stopping time
$$
\iff
$$
 {*T* = *n*} \in *F*_{*n*} for all *n* \in N.

Definition (Stopped Process)

Let $X_n : (\Omega, \mathcal{A}, \mathbb{P}) \to (E, \mathcal{E}), n \in \mathbb{N}$ be a process adapted to filtration $(\mathcal{F}_n)_{n \in \mathbb{N}}$ over (Ω, \mathcal{A}) and let $T : (\Omega, \mathcal{A}, \mathbb{P}) \to (\mathbb{N}_{\leq \infty}, 2^{\mathbb{N}_{\leq} \infty})$ be a stopping time with respect to $(\mathcal{F}_n)_{n\in\mathbb{N}}$. We call

$$
(X_n^T)_{n \in \mathbb{N}}
$$
, where $X_n^T(\omega) := X_{\min\{T(\omega),n\}}(\omega)$ for all $\omega \in \Omega, n \in \mathbb{N}$

the stopped process.

Stopped Processes

Definition (σ**-algebra of the** *T***-past)** Let $T: (\Omega, \mathcal{A}, \mathbb{P}) \to (\mathbb{N}_{\leq \infty}, 2^{\mathbb{N}_{\leq \infty}})$ be a stopping time with respect to filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$ over (Ω,\mathcal{A}) . We call

$$
\mathcal{A}_T := \{ A \in \mathcal{A} \mid A \cap \{ T \le n \} \in \mathcal{F}_n \text{ for all } n \in \mathbb{N} \}
$$

the σ -algebra of the *T*-past.

Theorem

Let $T: (\Omega, \mathcal{A}, \mathbb{P}) \to (\mathbb{N}_{\leq \infty}, 2^{\leq \infty})$ be finite and a stopping time with respect to $\text{filtration } (\mathcal{F}_n)_{n \in \mathbb{N}} \text{ over } (\Omega, \mathcal{A})$. Let further $X_n : (\Omega, \mathcal{A}, \mathbb{P}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$, $n \in \mathbb{N}$ be a *stochastic process adapted to* $(\mathcal{F}_n)_{n \in \mathbb{N}}$ *. Then the random variable*

$$
X_T: \Omega \to \mathbb{R}, \ \omega \mapsto X_T(\omega) := X_{T(\omega)}(\omega)
$$

is A_T - $\mathcal{B}(\mathbb{R})$ -measurable.

Proof.

Let $B \in \mathcal{B}(\mathbb{R})$ and $n \in \mathbb{N}$, then due to finiteness of T, we have

$$
X_T^{-1}(B) = \bigcup_{j \in \mathbb{N}} X_j^{-1}(B) \cap \{T = j\} \in \mathcal{A}
$$

and

$$
X_T^{-1}(B) \cap \{ T \le n \} = \bigcup_{j=0}^n X_j^{-1}(B) \cap \{ T = j \} \in \mathcal{F}_n \implies X_T^{-1}(B) \in \mathcal{A}_T.
$$

Martingale Stopping Theorem

Theorem (Martingale Stopping Theorem)

If $(X_n)_{n \in \mathbb{N}}$ *is a martingale with respect to filtration* $(\mathcal{F}_n)_{n \in \mathbb{N}}$ *and if T is a finite stopping time with respect to* $(\mathcal{F}_n)_{n \in \mathbb{N}}$ *, then*

$$
\mathbb{E} X_T = \mathbb{E} X_1
$$

if one of the following holds:

- · (*Xn*)*n*∈^N *is bounded* P*-almost surely;*
- · *T is bounded* P*-almost surely; or*
- \cdot $\mathbb{E}T < \infty$, and there is a constant $c \in \mathbb{R}$ such that

$$
\mathbb{E}(|X_{n+1}-X_n| \mid \mathcal{F}_n) < c \text{ for all } n \in \mathbb{N}.
$$

Proof Sketch.

- \cdot In all cases we have a finite *T*. Therefore, X_T is \mathcal{A}_T - $\mathcal{B}(\mathbb{R})$ -measurable and in particular $\mathcal{A}\text{-}\mathcal{B}(\mathbb{R})$ -measurable.
- There is a pointwise limit $X_n^T \to X_T$.
- By the requirements, one can uniformly bound the expected value $(\mathbb{E}X_n^T)_{n\in\mathbb{N}}$.
- Due to Lebesgue's Theorem we obtain $\lim_{n\to\infty} \mathbb{E} X_n^T = \mathbb{E} X_T$.
- By the Stopping Lemma, $\mathbb{E}X_n^T = \mathbb{E}X_1$ holds for all $n \in \mathbb{N}$.

Example (Gambler's Ruin 3)

We extend the previous example toward a more interesting stopping time. We consider the same martingale - the random walk $(X_n)_{n\in\mathbb{N}}$ in conjunction with the stopping time

$$
T^{b}(\omega) := \min\{n \in \mathbb{N} \mid X_n(\omega) \in \{\ell_1, -\ell_2\} \text{ or } n = b\} \text{ for all } \omega \in \Omega,
$$

where $b \in \mathbb{N}_{\leq \infty}$ and $\ell_1, \ell_2 \in \mathbb{N}$.

· Clearly, T^b is a stopping time with respect to \mathcal{F}_n , as for $n \neq b$

$$
\{T^{b} = n\} = \{X_n \in \{\ell_1, -\ell_2\}\} \cap \left(\bigcap_{k < n} \{X_k \notin \{\ell_1, -\ell_2\}\}\right) \in \mathcal{F}_n
$$

and in case $n = b < \infty$

$$
\{T^b = b\} = \bigcap_{k < b} \{X_k \notin \{\ell_1, -\ell_2\}\} \in \mathcal{F}_b.
$$

$$
T^{b}(\omega) := \min\{n \in \mathbb{N} \mid X_n(\omega) \in \{\ell_1, -\ell_2\} \text{ or } n = b\} \text{ for all } \omega \in \Omega.
$$

• We prove that $\mathbb{P}\{T^b = \infty\} = 0$. For this let $n \in \mathbb{N}$, define $\ell := \ell_1 + \ell_2$ and pick $r_n := \max\{k \in \mathbb{N} \mid k\ell \leq n\}$. For all $b \in \mathbb{N}_{\leq \infty}$ it follows, that

$$
\{T^{b} \geq n\} \subseteq \{T^{\infty} \geq n\} \subseteq \{T^{\infty} \geq r_n \ell\}
$$

$$
\subseteq \bigcap_{k < r_n} \{ |X_{(k+1)\ell} - X_{k\ell}| < \ell \}
$$

$$
= \bigcap_{k < r_n} \{ |X_{(k+1)\ell} - X_{k\ell}| = \ell \}^C
$$

$$
= \bigcap_{0 \leq k < r_n} \{ \left| \sum_{j=k\ell+1}^{(k+1)\ell} Z_j \right| = \ell \}
$$

and therefore

$$
\mathbb{P}\{T^b \ge n\} \le (1 - 1/2^{\ell-1})^{r_n} \xrightarrow{n \to \infty} 0.
$$

$$
T^{b}(\omega) := \min\{n \in \mathbb{N} \mid X_{n}(\omega) \in \{\ell_{1}, -\ell_{2}\} \text{ or } n = b\} \text{ for all } \omega \in \Omega.
$$

$$
\mathbb{P}\{T^{b} \ge n\} \xrightarrow{n \to \infty} 0 \text{ for all } b \in \mathbb{N}_{\le \infty}.
$$

• It remains to show that $\mathbb{E} X_{T^b} = 0$, where $b < \infty$. As T^b is bounded, we have $\mathbb{E} T^b \leq b < \infty$

and due to the fact that

$$
\mathbb{E}(|X_{n+1}-X_n| | \mathcal{F}_n)=\mathbb{E}(|Z_{n+1}| | \mathcal{F}_n)\leq \mathbb{E}(1 | \mathcal{F}_n)=1,
$$

we can apply the Martingale Stopping Theorem. Setting

$$
q_b := \mathbb{P}(X_{T^b} = \ell_1) \quad \text{and} \quad w_b := \mathbb{P}(X_{T^b} \notin \{\ell_1, -\ell_2\})
$$

we obtain

$$
\ell_1 q_b - \ell_2 (1 - q_b) \leq \mathbb{E} X_{T^b} = 0 \leq \ell_1 (q_b + w_b) - \ell_2 (1 - q_b - w_b).
$$

By the previous derivation, it follows additionally that

$$
0 = \lim_{b \to \infty} \mathbb{E} X_{T^b} = \lim_{b \to \infty} \ell_1 q_b - \ell_2 (1 - q_b) \iff \lim_{b \to \infty} q_b = \frac{\ell_2}{\ell_1 + \ell_2}.
$$

Figure 3: A realization of $s = 40$ independent copies $\left(X_k^{T_b,j}\right)$ *k* \setminus *k*≤*n* of $\left(X_k^{T_b}\right)$ *k* \setminus *k*≤*n* and the *m*-th sample mean $\hat{q}_b(m)$ of the corresponding realization of $\mathbb{1}\{X_T = \ell_1\}$, where $\ell_1 = 10; \ell_2 = 20; m, j \leq s; 0 \ll b$.

Theorem (Wald's Equation)

Let $X_n \in L^1(\Omega, \mathcal{A}, \mathbb{P}), n \in \mathbb{N}$ *be independent, identically distributed random variables and let T be a finite stopping time with respect to*

$$
(\mathcal{F}_n := \mathcal{I}(X_1, X_2, \ldots, X_n))_{n \in \mathbb{N}}.
$$

If T has bounded expectation, then

$$
\mathbb{E}\left(\sum_{i=1}^T X_i\right) = \mathbb{E} T \cdot \mathbb{E} X_1.
$$

Proof.

- \cdot $(Z_n := \sum_{j=1}^n (X_j \mathbb{E}X_j))_{n \in \mathbb{N}}$ is a martingale with respect to $(\mathcal{F}_n)_{n \in \mathbb{N}}$.
- In conjunction with *T*, the martingale $(Z_n)_{n\in\mathbb{N}}$ fulfills the third version of the Martingale Stopping Theorem.
- · Due to linearity of the expected value and by the former, we obtain the result.

 \cdot $(Z_n := \sum_{j=1}^n (X_j - \mathbb{E}X_j))_{n \in \mathbb{N}}$ is a martingale with respect to $(\mathcal{F}_n)_{n \in \mathbb{N}}$.

Clearly, Z_n is \mathcal{F}_n - $\mathcal{B}(\mathbb{R})$ -measurable and

$$
\mathbb{E}|Z_n| \leq \mathbb{E}\left(\sum_{j=1}^n |X_j| + \mathbb{E}|X_j|\right) = 2n\mathbb{E}X_1 \text{ for all } n \in \mathbb{N}.
$$

Also,

$$
\mathbb{E}(Z_{n+1} | \mathcal{F}_n) = \mathbb{E}(X_{n+1} - \mathbb{E}X_{n+1} + Z_n | \mathcal{F}_n)
$$

= $\mathbb{E}(X_{n+1} | \mathcal{F}_n) - \mathbb{E}X_{n+1} + Z_n$
= Z_n for all $n \in \mathbb{N}$.

· In conjuction with *T* , the martingale (*Zn*)*n*∈*^N* fulfills the third version of the Martingale Stopping Theorem.

We have

$$
\mathbb{E}(|Z_{n+1} - Z_n| | \mathcal{F}_n) = \mathbb{E}(|X_{n+1} - \mathbb{E}X_{n+1}| | \mathcal{F}_n)
$$

= $\mathbb{E}(|X_{n+1} - \mathbb{E}X_{n+1}|)$
 $\leq 2\mathbb{E}|X_1| \text{ for all } n \in \mathbb{N}$

and as *T* is finite and $ET < \infty$ by assumption, the Martingale Stopping Theorem tells us

$$
\mathbb{E}Z_T=\mathbb{E}Z_1.
$$

· Due to linearity of the expected value and by the former, we obtain the result.

Clearly,

$$
\mathbb{E}Z_1=\mathbb{E}(X_1-\mathbb{E}X_1)=\mathbb{E}X_1-\mathbb{E}X_1=0.
$$

Therefore, we have

$$
0 = \mathbb{E}Z_1 = \mathbb{E}Z_T = \mathbb{E}\left(\sum_{j=1}^T (X_j - \mathbb{E}X_1)\right)
$$

= $\mathbb{E}\left(\left(\sum_{j=1}^T X_j\right) - T\mathbb{E}X_1\right)$
= $\mathbb{E}\left(\sum_{j=1}^T X_j\right) - \mathbb{E}T \cdot \mathbb{E}X_1,$

which gives the result.

 \Box

Concentration of Martingales

Theorem (Azuma-Hoeffding Inequality)

Let $(X_n)_{n\in\mathbb{N}}$ be a martingale with respect to filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$ and assume that for *all* $k \in \mathbb{N}$, there exists $c_k \in \mathbb{R}$ such that $|X_{k+1} - X_k| \leq c_k$.

Then, for all $n \in \mathbb{N}$ *and for all* $\lambda > 0$ *, we have*

$$
\mathbb{P}(|X_n - X_1| \ge \lambda) \le 2 \exp\left(-\frac{\lambda^2}{2\sum_{k=1}^{n-1} c_k^2}\right).
$$

Proof.

• For every $\alpha > 0$, there is an upper bound

$$
\mathbb{E}\left(e^{\alpha(X_n-X_1)}\right) \le \exp\left(\frac{\alpha^2}{2}\sum_{k=1}^{n-1}c_k^2\right) \text{ for all } n \in \mathbb{N}.
$$

 \cdot By Markov's Inequality and by subadditivity of \mathbb{P} , we therefore obtain a bound

$$
\mathbb{P}(|X_n - X_1| \ge \lambda) \le 2 \exp\left(\frac{\alpha^2}{2} \sum_{k=1}^{n-1} c_k^2 - \alpha \lambda\right) \text{ for all } n \in \mathbb{N}.
$$

• We minimize the upper bound over $\alpha > 0$ to obtain the result.

• For every $\alpha > 0$, there is an upper bound

$$
\mathbb{E}\left(e^{\alpha(X_n-X_1)}\right) \le \exp\left(\frac{\alpha^2}{2}\sum_{k=1}^{n-1}c_k^2\right) \text{ for all } n \in \mathbb{N}.
$$

For all $n \in \mathbb{N}$, we define $Y_{n+1} := X_{n+1} - X_n$ and given $\alpha > 0$, we divide this step into the three substeps

There is an upper bound

$$
e^{\alpha Y_{n+1}} \leq \frac{e^{-\alpha c_n} + e^{\alpha c_n}}{2} + \frac{Y_{n+1}}{2c_n} (e^{\alpha c_n} - e^{-\alpha c_n});
$$

There is an upper bound

$$
\mathbb{E}\left(e^{\alpha Y_{n+1}} \mid \mathcal{F}_n\right) \le \exp\left((\alpha c_n)^2/2\right) ; \text{ and}
$$

There is an upper bound

$$
\mathbb{E}\left(e^{\alpha(X_{n+1}-X_1)}\right) \leq \mathbb{E}\left(e^{\alpha(X_n-X_1)}\right)\exp\left((\alpha c_n)^2/2\right)
$$

from which the statement can be concluded by induction.

There is an upper bound

$$
e^{\alpha Y_{n+1}} \leq \frac{e^{-\alpha c_n} + e^{\alpha c_n}}{2} + \frac{Y_{n+1}}{2c_n} (e^{\alpha c_n} - e^{-\alpha c_n});
$$

By assumption $|Y_{n+1}| = |X_{n+1} - X_n| \leq c_n$, therefore we can find a convex combination

$$
Y_{n+1} = -c_n \frac{1 - Y_{n+1}/c_n}{2} + c_n \frac{1 + Y_{n+1}/c_n}{2}
$$

.

Using the convexity of $t \mapsto e^{\alpha t}$, we obtain that

$$
e^{\alpha Y_{n+1}} \leq \frac{1 - Y_{n+1}/c_n}{2} e^{-\alpha c_n} + \frac{1 + Y_{n+1}/c_n}{2} e^{\alpha c_n}
$$

=
$$
\frac{e^{-\alpha c_n} + e^{\alpha c_n}}{2} + \frac{Y_{n+1}}{2c_n} (e^{\alpha c_n} - e^{-\alpha c_n}).
$$

There is an upper bound

$$
\mathbb{E}\left(e^{\alpha Y_{n+1}} | \mathcal{F}_n\right) \leq \exp\left((\alpha c_n)^2/2\right) ;
$$

Note that $(X_n)_{n\in\mathbb{N}}$ is a martingale with respect to filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$, thus

$$
\mathbb{E}(Y_{n+1} | \mathcal{F}_n) = \mathbb{E}(X_{n+1} - X_n | \mathcal{F}_n)
$$

= $\mathbb{E}(X_{n+1} | \mathcal{F}_n) - X_n = 0.$

Using this and the previous result, we obtain

$$
\mathbb{E}\left(e^{\alpha Y_{n+1}} \mid \mathcal{F}_n\right) \leq \mathbb{E}\left(\frac{e^{\alpha c_n} + e^{-\alpha c_n}}{2} + \frac{Y_{n+1}}{2c_n}(e^{\alpha c_n} - e^{-\alpha c_n}) \mid \mathcal{F}_n\right)
$$

$$
= \frac{e^{\alpha c_n} + e^{-\alpha c_n}}{2} = \frac{1}{2} \sum_{j=0}^{\infty} \frac{(\alpha c_n)^j + (-\alpha c_n)^j}{j!}
$$

$$
= \sum_{j=0}^{\infty} \frac{(\alpha c_n)^{2j}}{(2j)!} \leq \exp\left((\alpha c_n)^2/2\right).
$$

There is an upper bound

$$
\mathbb{E}\left(e^{\alpha(X_{n+1}-X_1)}\right) \leq \mathbb{E}\left(e^{\alpha(X_n-X_1)}\right) \exp\left((\alpha c_n)^2/2\right) ;
$$

From the previous statement and by the tower property it follows that

$$
\mathbb{E}\left(e^{\alpha(X_{n+1}-X_1)}\right) = \mathbb{E}\left(\mathbb{E}\left(e^{\alpha(X_n-X_1)}e^{\alpha Y_{n+1}} \mid \mathcal{F}_n\right)\right)
$$

$$
= \mathbb{E}\left(e^{\alpha(X_n-X_1)}\mathbb{E}\left(e^{\alpha Y_{n+1}} \mid \mathcal{F}_n\right)\right)
$$

$$
\leq \mathbb{E}\left(e^{\alpha(X_n-X_1)}\right)\exp\left((\alpha c_n)^2/2\right).
$$

By induction and the fact that $e^{\alpha(X_1 - X_1)} = 1$, we obtain

$$
\mathbb{E}\left(e^{\alpha(X_n-X_1)}\right) \le \exp\left(\frac{\alpha^2}{2}\sum_{k=1}^{n-1}c_k^2\right) \text{ for all } n \in \mathbb{N}.
$$

 \cdot By Markov's Inequality and by subadditivity of $\mathbb P$, we therefore obtain a bound

$$
\mathbb{P}(|X_n - X_1| \ge \lambda) \le 2 \exp\left(\frac{\alpha^2}{2} \sum_{k=1}^{n-1} c_k^2 - \alpha \lambda\right) \text{ for all } n \in \mathbb{N}.
$$

Using the previous result, we have for all $\alpha > 0$, for all $\lambda > 0$, and for all $n \in \mathbb{N}$ that

$$
\mathbb{P}(X_n - X_1 \ge \lambda) = \mathbb{P}\left(e^{\alpha(X_n - X_1)} \ge e^{\alpha \lambda}\right)
$$

$$
\le \frac{\mathbb{E}\left(e^{\alpha(X_n - X_1)}\right)}{e^{\alpha \lambda}}
$$

$$
\le \exp\left(\alpha^2 \sum_{k=1}^{n-1} c_k^2 / 2 - \alpha \lambda\right)
$$

.

By the same argument applied to $(-X_n)_{n\in\mathbb{N}}$ we obtain the bound

$$
\mathbb{P}(-X_n + X_1 \ge \lambda) \le \exp\left(\alpha^2 \sum_{k=1}^{n-1} c_k^2/2 - \alpha \lambda\right).
$$

Subadditivity of ${\mathbb P}$ then yields the result.

• We minimize the upper bound over $\alpha > 0$ to obtain the result.

For all $n \in \mathbb{N}$ and $\lambda > 0$, minimizing the upper bound of

$$
\mathbb{P}(|X_n - X_1| \ge \lambda) \le 2 \exp\left(\frac{\alpha^2}{2} \sum_{k=1}^{n-1} c_k^2 - \alpha \lambda\right)
$$

over $\alpha > 0$ is equivalent to minimizing the function

$$
\alpha \longmapsto \frac{\alpha^2}{2} \sum_{k=1}^{n-1} c_k^2 - \alpha \lambda \, .
$$

The minimum of the above function is found in its only local minimum and as the unique root

$$
\alpha \sum_{k=1}^{n-1} c_k^2 - \lambda = 0 \iff \alpha = \frac{\lambda}{\sum_{k=1}^{n-1} c_k^2}
$$

.

of its derivative with respect to α . Plugging the minimum into the exponent of the above bound, we obtain

$$
\frac{\alpha^2}{2} \sum_{k=1}^{n-1} c_k^2 - \alpha \lambda = \frac{1}{2} \frac{\lambda^2}{\sum_{k=1}^{n-1} c_k^2} - \frac{\lambda^2}{\sum_{k=1}^{n-1} c_k^2} = -\frac{\lambda^2}{2 \sum_{k=1}^{n-1} c_k^2}
$$

and conclude the result.

 \Box

Definition (Graphs)

Define a dense graph $G_m := (V_m, E_m)$, where $m \in \mathbb{N}$,

• the set $V_m := \{v_j \mid j \in \mathbb{N}, j \leq m\}$ is called vertices and

· the set

$$
E_m := \{e : \{0,1\} \to V_m \mid e(0) \neq e(1)\} /_{\sim},
$$

where

$$
e \sim e' : \iff e\{0,1\} = e'\{0,1\} \, ,
$$

is called edges.

We say $G := (V, E)$ is a graph *k*-subordinate to G_m if

- \cdot $V = V_m$,
- $E \subseteq E_m$, and
- \cdot $|E| = k$.

We write $\mathcal{G}_m^k := \{ G \mid G \text{ is } k\text{-subordinate to } G_m \}$). Further, we call a vertice $v \in V$ isolated if

$$
v \notin \bigcup_{e \in E} e\{0,1\}.
$$

Example (Concentration of the Number of Isolated Vertices) We will now take a look at random variable

$$
G \sim \mathrm{Unif}(\mathcal{G}_m^k).
$$

Clearly, as the range of *G* is finite, we can consider the associated power set as a σ -algebra. Of special interest to us are the number of isolated vertices iso(G), constructed with the map

$$
\begin{cases}\n\text{iso}: \mathcal{G}_m^k \longrightarrow \mathbb{N}_{[0,m]} \\
(V, E) \longmapsto |\{v \in V \mid v \text{ is isolated}\}|\n\end{cases}
$$

We will now

- · Compute E iso(*G*) and
- Prove that $\mathbb{P}\{|\text{iso}(G) \mathbb{E}|\text{iso}(G)| \geq \lambda\} \leq 2 \exp\left(-\frac{\lambda^2}{8k}\right)$ 8*k* $\big)$.

Figure 4: A realization of *G* ~ Unif (\mathcal{G}_m^k) , where $m = k = 100$.

 \cdot Compute \mathbb{E} iso (G) ;

We have the identity

$$
\mathbb{E}\operatorname{iso}(G) = \mathbb{E}\sum_{v \in V} \mathbb{1}\{v \text{ is isolated}\}
$$

$$
= \sum_{v \in V} \mathbb{E}\mathbb{1}\{v \text{ is isolated}\}
$$

$$
= |V| \cdot \mathbb{P}\{v_1 \text{ is isolated}\}.
$$

Clearly, $|V| = |V_m| = m$. As the random variable *G* takes exactly the values of every graph containing *k* edges, we have

$$
|\mathcal{G}_m^k| = \binom{\binom{m}{2}}{k}.
$$

For the probability of a vertice being isolated we count the number of graphs that fulfill this property and obtain the associated probability by division

$$
\mathbb{P}\{v_1 \text{ is isolated}\} = \frac{|\mathcal{G}_{m-1}^k|}{|\mathcal{G}_m^k|}.
$$

Prove that
$$
\mathbb{P}\{|\text{iso}(G) - \mathbb{E}\text{iso}(G)| \ge \lambda\} \le 2 \exp\left(-\frac{\lambda^2}{8k}\right).
$$

This follows, as we can

- ◇ Build an edge exposure martingale $(X_n)_{n \in \mathbb{N}}$ of iso(G) with respect to G ;
- ◇ Bound $|X_{n+1} X_n|$ ≤ 2 for all $n \in \mathbb{N}$; and
- \diamond Show that the result can be obtained by applying the Azuma-Hoeffding Inequality to the martingale $(X_n)_{n\in\mathbb{N}}$.

↑ Build an edge exposure martingale $(X_n)_{n \in \mathbb{N}}$ of iso(G) with respect to G ;

Consider an enumeration $(e)_{i \leq j}$, $j = \frac{m(m-1)}{2}$ $\frac{n-1}{2}$ of the edges E_m of a dense graph with *m* vertices. We will now define a random variable describing the vertices that are connected to e_i in the random graph G . For $1 \leq i \leq j$, we define

$$
\begin{cases} \tilde{e}_i : \mathcal{G}_n^k \longrightarrow 2^V \\ (V, E) \longmapsto e_i \{0, 1\} \text{ if } e_i \in E, \ \emptyset \text{ else.} \end{cases}
$$

and therefore $\tilde{e}_i(G)$ describes just that. Now for all $n \in \mathbb{N}$, we define $\mathcal{F}_n := \mathcal{I}(\tilde{e}_1(G), \ldots, \tilde{e}_n(G))$ and

$$
X_0 := \mathbb{E}\mathrm{iso}(G), X_n := \mathbb{E}(\mathrm{iso}(G) | \mathcal{F}_n).
$$

Clearly, $(X_n)_{n \in \mathbb{N}_{\geq 0}}$ is a martingale as for all $n \in \mathbb{N}_{\geq 0}$, we have

$$
\mathbb{E}(X_{n+1} | \mathcal{F}_n) = \mathbb{E}(\mathbb{E}(\text{iso}(G) | \mathcal{F}_{n+1}) | \mathcal{F}_n)
$$

=
$$
\mathbb{E}(\text{iso}(G) | \mathcal{F}_n) = X_n.
$$

 \Diamond Bound $|X_{n+1} - X_n| \leq 2$ for all $n \in \mathbb{N}$;

By definition, we have for $G = (V, E) \sim \text{Unif}(\mathcal{G}_m^k)$, that

$$
\text{iso}(G) = \left| \left(\bigcup_{e \in E} e\{0, 1\} \right)^C \right| = \left| \left(\bigcup_{i \le j} \tilde{e}_i(G) \right)^C \right|
$$

$$
\le \left| \left(\bigcup_{\substack{i \le j \\ i \ne n+1}} \tilde{e}_i(G) \right)^C \right|.
$$

Therefore, for all $n \in \mathbb{N}$, we obtain

$$
X_{n+1} - X_n = \mathbb{E}(\text{iso}(G) | \mathcal{F}_{n+1}) - \mathbb{E}(\text{iso}(G) | \mathcal{F}_n)
$$

\n
$$
\leq \mathbb{E}\left(\left|\bigcap_{\substack{i \leq j \ i \neq n+1}} \tilde{e}_i(G)^C\right| \middle| \mathcal{F}_{n+1}\right) - \mathbb{E}(\text{iso}(G) | \mathcal{F}_n)
$$

\n
$$
= \mathbb{E}\left(\left|\bigcap_{\substack{i \leq j \ i \neq n+1}} \tilde{e}_i(G)^C\right| - \text{iso}(G) \middle| \mathcal{F}_n\right) \leq \mathbb{E}\left(\left|\tilde{e}_{n+1}(G)\right| | \mathcal{F}_n\right)
$$

\n
$$
\leq 2.
$$

By a similar derivation we get $X_{n+1} - X_n \geq -2$ and conclude the result.

 \diamond Show that the result can be obtained by applying the Azuma-Hoeffding Inequality to the martingale $(X_n)_{n\in\mathbb{N}}$.

Clearly, $X_n = \text{iso}(G)$ if $n \geq \frac{m(m-1)}{2}$ $\frac{n-1}{2}$ and $X_0 = \mathbb{E} \text{ iso}(G)$. By the fact that *G* has only *k* edges and by the Azuma-Hoeffding Inequality, we get

$$
\mathbb{P}\{|\text{iso}(G) - \mathbb{E}\text{iso}(G)| \ge \lambda\} \le 2 \exp\left(-\frac{\lambda^2}{2\sum_{i=1}^{m(m-1)/2} c_i^2}\right)
$$

$$
= 2 \exp\left(-\frac{\lambda^2}{8k}\right).
$$

Figure 5: An estimation of $\lambda \mapsto \mathbb{P}\{|\text{iso}(G) - \mathbb{E}\text{iso}(G)| \geq \lambda\}$, created from 1000 i ndependent samples of $\mathrm{Unif}(\mathcal{G}_m^k)$, and the associated bounds (dash-dotted) for $m = 500$ and different values of *k*.

Thank You!

Find the full source-code of this presentation on my Github soon:

github.com/NiMlr

The content of this presentation is mainly based on and influenced by:

- M. Mitzenmacher and E. Upfal (2017). *Probability and Computing: Randomization and Probabilistic Techniques in Algorithms and Data Analysis*. Cambridge University Press. URL: https://books.google.de/books?id=E9UlDwAAQBAJ
- N. Henze (2016). *Vorlesung Wahrscheinlichkeitstheorie*. KIT Bibliothek. url: https://publikationen.bibliothek.kit.edu/1000113898

The source-code to generate the visualizations was written in *Python 3* and makes use of the software:

- P. Virtanen et al. (2020). "SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python". In: *Nature Methods* 17, pp. 261–272
- **M** [F. Pedregosa e](https://books.google.de/books?id=E9UlDwAAQBAJ)t al. (2011). "Scikit-learn: Machine Learning in Python". In: *[Journal of Machin](https://publikationen.bibliothek.kit.edu/1000113898)e Learning Research* 12, pp. 2825–2830

A. Hagberg, D. Schult, and P. Swart (2008). "Exploring Network Structure, Dynamics, and Function using NetworkX". In: *Proceedings of the 7th Python in Science Conference*. Pasadena, CA USA, pp. 11–15