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1 Conditional Expectations
Let (Ω,F ,P) be a probability space.

Definition 1.1 (Conditional expectation) Let X ∈ L1
R(Ω,F ,P) and G be a sub-σ-

algebra of F .

A random variable Z ∈ L1
R(Ω,G,P|G) is called conditional expectation of X given

G if E[Z1G] = E[X1G] for all G ∈ G.

Theorem 1.1 (Existence and uniqueness) Let X ∈ L1
R(Ω,F ,P) and G be sub-σ-

algebra of F . Then

(i) there exists a conditional expectation of X given G, and

(ii) if Z1, Z2 are conditional expectations of X given G, then Z1 = Z2 P-a.s..

Remark 1.1 (Notation) Let X ∈ L1
R(Ω,F ,P) and G be a sub-σ-algebra of F . If Z

is a conditional expectation of X given G, then we also write E[X|G] instead of Z.

Remark 1.2 (Relation to conditional expected value) Let G be a sub-σ-algebra
of F . For each G ∈ G the conditional expected value of X ∈ L1

R(Ω,F ,P) given the
event G can be determined by just knowing the conditional expectation E[X|G].

More precisely, for each G ∈ G with P[G] > 0, we have

E[X|G] =
E[E[X|G]1G]

P[G]
,

as E[X|G] = E[X1G]/P[G] = E[E[X|G]1G]/P[G].

Example 1.1 Let {Gi}i∈I be a partition of Ω consisting of countably many sets from
F . Then, for every X ∈ L1

R(Ω,F ,P) a conditional expectation of X give σ({Gi}i∈I) is
given by

∑
i∈I E[X|Gi]1Gi . In particular,

E[X|σ({Gi}i∈I)] =
∑
i∈I

E[X|Gi]1Gi
P-a.s..

Proposition 1.1 Let X,X1, X2 ∈ L1
R(Ω,F ,P), α, α1, α2 ∈ R, and G,G1,G2 be sub-σ-

algebras of F . Then the following assertions hold true, where in (ii) we tacitly assume
(w.l.o.g.) that the pointwise additions are well defined.

(i) E[X|G] = α P-a.s. if X = α P-a.s.

(ii) E[α1X1 + α2X2|G] = α1E[X1|G] + α2E[X2|G] P-a.s.

(iii) E[X|G]± ≤ E[X±|G] P-a.s.

(iv) E[X|G] = X P-a.s. if X ∈ L1
R(Ω,G,P|G)
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(v) ‖E[X|G]‖1 ≤ ‖X‖1 (i.e., E[|E[X|G]|] ≤ E[|X|])

(vi) E[E[X|G1]|G2] = E[E[X|G2]|G1] = E[X|G1] P-a.s. if G1 ⊆ G2

(vii) E[E[X|G]] = E[X]

(viii) E[X1|G] ≤ E[X2|G] P-a.s. if X1 ≤ X2 P-a.s.

(ix) |E[X|G]| ≤ E[|X||G] P-a.s.

(x) E[X ′X|G] = X ′E[X|G] for X ′ ∈ LR(Ω,G) with X ′X ∈ L1
R(Ω,F ,P)

(xi) E[X|G] = E[X] P-a.s. if σ(X) and G are independent

(xii) E[X|G] = E[X] P-a.s. if P[G] ∈ {0, 1} for all G ∈ G

Definition 1.2 (Conditional probability) Let A ∈ F and G be a sub-σ-algebra of
F . Every conditional expectation of 1A given G is called conditional probability of
A given G.

Remark 1.3 (Notation) Let A ∈ F and G be sub-σ-algebra of F . If Z is a condi-
tional expectation of A given G, then we also write P[A|G] instead of Z or E[1A|G].

Remark 1.4 (Conditioning on random variables) Let X ∈ L1
R(Ω,F ,P) and A ∈

F . Moreover, let Y be a random variable on (Ω,F ,P).

(i) If Z is a conditonal expectation of X given Y , then we also write E[X|Y ] instead
of Z or E[X|σ(Y )].

(ii) If Z is a conditional probability of A given Y , then we also write P[A|Y ] instead
of Z or E[1A|Y ].

Let Y be a random variable on (Ω,F ,P) with values in a measurable space (Ω′,F ′).

Definition 1.3 (Factorised conditioning) Let X ∈ L1
R(Ω,F ,P) and A ∈ F .

(i) A function g ∈ LR(Ω
′,F ′) is called factorised conditional expectation of X

given Y if g(Y ) = E[X|Y ] P-a.s..

(ii) A function g ∈ LR(Ω
′,F ′) is called factorised conditional probability of A

given Y if g(Y ) = P[A|Y ] P-a.s..

Theorem 1.2 (Existence and uniqueness) Let X ∈ L1
R(Ω,F ,P) and A ∈ F .

(i) There exists a PY -a.s. unique factorised conditional expectation of X given Y .

(ii) There exists a PY -a.s. unique factorised conditional probability of A given Y .

Remark 1.5 (Notation) Let X ∈ L1
R(Ω,F ,P) and A ∈ F .
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(i) If g is a factorised conditional expectation of X given Y , then we also write
E[X||Y = ·] instead of g(·).

(ii) If g is a factorised conditional probability of A given Y , then we also write
P[A||Y = ·] instead of g(·)

Theorem 1.3 (Insertion rule) Let X be a random variable on (Ω,F ,P) with val-
ues in a measurable space (E, E). Let f ∈ LR(E × Ω′, E × F ′) and assume that
f(X,Y ) ∈ L1

R(Ω,F ,P).

If X and Y are independent, then there exists a PY -null set N ′ ∈ F ′ such that
g(ω′) := E[f(X,ω′)], ω′ ∈ Ω′ \ N ′, and g(ω′) := 0, ω′ ∈ N ′, defines a function
g ∈ L1

R(Ω
′,F ′,PY ) that is a factorised conditional expectation of f(X,Y ) given Y .

In this case, we have in particular that

E[f(X,Y )||Y = ω′] = E[f(X,ω′)] PY -a.a. ω′ ∈ Ω′.
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2 Conditional Distributions
Definition 2.1 (Probability kernel) Let (Ω1,F1) and (Ω2,F2) be mb. spaces. A
map p : Ω1 ×F2 → R is called (probability) kernel from (Ω1,F1) to (Ω2,F2) if it
satistfies

(K1) p(·, A2) ∈ LR(Ω1,F1) for all A2 ∈ F2, and

(K2) p(ω1, ·) ∈ M1(Ω2,F2) for all ω1 ∈ Ω1.

Proposition 2.1 (Product of kernels) Let (Ωj ,Fj) , j = 1, 2, 3, be mb. spaces.
Let p2|1 be a kernel from (Ω1,F1) to (Ω2,F2), and p3|1,2 be a kernel from (Ω1 ×
Ω2,F1 ⊗F2) to (Ω3,F3). Then the right-hand side of

p2|1 ⊗ p3|1,2(ω1, A2,3)

:=

∫
Ω2

∫
Ω3

1A2,3

(
(ω2, ω3)

)
p3|1,2

(
(ω1, ω2),dω3

)
p2|1(ω1,dω2)

=

∫
Ω2

p3|1,2
(
(ω1, ω2), (A2,3)ω2

)
p2|1(ω1,dω2)

is well defined for all ω1 ∈ Ω1, A2,3 ∈ F2 ⊗F3, and the resulting map

p2|1 ⊗ p3|1,2 : Ω1 × (F2 ⊗F3) → R+

is a kernel from (Ω1,F1) to (Ω2 × Ω3,F2 ⊗F3).

Definition 2.2 (Product of kernels) In the framework of Proposition 2.1, the ker-
nel p2|1 ⊗ p3|1,2 from (Ω1,F1) to (Ω2 × Ω3,F2 ⊗F3) defined is called product of p2|1
and p3|1,2.

Corollary 2.0.1 (Concatenation of kernels) Let (Ωj ,Fj) , j = 1, 2, 3, be mb. spaces.
Let p2|1 be a kernel from (Ω1,F1) to (Ω2,F2), and p3|2 be a kernel from (Ω2,F2) to
(Ω3,F3).

sThen the map p2|1p3|2 : Ω1 ×F3 → R+ defined by

p2|1p3|2(ω1, A3) :=

∫
Ω2

p3|2(ω2, A3) p2|1(ω1,dω2)

is a kernel from (Ω1,F1) to (Ω3,F3).

Definition 2.3 (Concatenation of kernels) In the framework of Corollary 2.0.1,
the kernel p2|1p3|2 from (Ω1,F1) to (Ω3,F3) defined is called concatenation of p2|1
and p3|2.

Corollary 2.0.2 (Concatenation with a measure) Let (Ω1,F1) and (Ω2,F2) be
measurable spaces. Let µ1 be a probability measure on (Ω1,F1), and p2|1 be a kernel
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from (Ω1,F1) to (Ω2,F2).

Then the map µ1p2|1 : F2 → R+ defined by

µ1p2|1[A2] :=

∫
Ω1

p2|1(ω1, A2)µ1(dω1)

is a probability measure on (Ω2,F2).

Definition 2.4 (Concatenation with a measure) In the framework of Corollary 2.0.2,
the probability measure µ1p2|1 from (Ω2,F2) defined is called concatenation of µ1

and p2|1.

Corollary 2.0.3 (Product with a measure) Let (Ω1,F1) and (Ω2,F2) be measur-
able spaces. Let µ1 be a probability measure on (Ω1,F1), and p2|1 be a kernel from
(Ω1,F1) to (Ω2,F2). Then the right-hand side of

µ1 ⊗ p2|1[A1,2] :=

∫
Ω1

∫
Ω2

1A1,2

(
(ω1, ω2)

)
p2|1(ω1,dω2)µ1(dω1)

=

∫
Ω2

p2|1
(
ω1, (A1,2)ω1

)
µ1(dω1)

is well defined for all A1,2 ∈ F1 ⊗F2, and the resulting map

µ1 ⊗ p2|1 : F1 ⊗F2 → R+

is a probability measure on (Ω1 × Ω2,F1 ⊗F2).

Definition 2.5 (Product with a measure) In the framework of Corollary 2.0.3,
the probability measure µ1 ⊗ p2|1 on (Ω1 × Ω2,F1 ⊗F2) defined is called product of
µ1 and p2|1.

Remark 2.1 (Tonelli) Integration and the product/concatenation of a kernel is com-
mutative.

Remark 2.2 (Associativity) Products and concatenations of kernels are associative.

Let (Ω,F ,P) be a probability space and G ⊆ F be a sub-σ-algebra. Let X be a
random variable on (Ω,F ,P) taking values in a measurable space (E, E).

Definition 2.6 (Conditional distributions) A kernel P from (Ω,G) to (E, E) is
called conditional distribution of X given G if for every fixed B ∈ E,

P (·, B) is a conditional probability of {X ∈ B} given G.

If G is generated by a random variable Y on (Ω,F ,P), then we speak of a conditional
distribution of X given Y .
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Remark 2.3 (Notation) If P is a conditional distribution of X of G, then we also
write PX|G instead of P .

Theorem 2.1 (Uniqueness) For any two conditional distributions P1, P2 of X given
G, we have

(i) P1(ω,B) = P2(ω,B) P-a.e. ω ∈ Ω, for all B ∈ E, and

(ii) P1(ω,B) = P2(ω,B) for all B ∈ E, P-a.e. ω ∈ Ω, if E = σ(E0)

for some countable system E0 ⊆ E being closed under intersections.

Theorem 2.2 (Existence) If E is a complete and separable metric space and E =
B(E), then a conditional distribution of X given G exists.

Theorem 2.3 Let P be a conditional distribution of X given G, and X ′ be a (G, E ′)-
measurable random variable on (Ω,F ,P) with values in (E′, E ′). Moreover, let f ∈
LR(E × E′, E ⊗ E ′) with f(X,X ′) ∈ L1

R(Ω,F ,P).

Then there exists a P|G-null set N ∈ G, such that,

Z(ω) :=

∫
E

f
(
x,X ′(ω)

)
P (ω, dx) , ω ∈ N c , and Z(ω) := 0 , ω ∈ N ,

defines a conditional expectation of f(X,X ′) given G. In particular,

E[f(X,X ′)|G](ω) =
∫
E

f
(
x,X ′(ω)

)
PX|G(ω, dx) P-a.e. ω ∈ Ω.

Let now (Ω,F ,P) be a probability space.
Let X be a random variable on (Ω,F ,P) taking values in a measurable space (E, E).
Let Y be a random variable on (Ω,F ,P) taking values in a measurable space (Ω′,F ′).

Definition 2.7 (Factorised conditional distributions) A kernel p from (Ω′,F ′)
to (E, E) is called factorised conditional distribution of X given Y if

p(Y (·), ·) is a conditional distribution of X given Y .

Remark 2.4 (Relation to factorised conditional probabilities) A kernel p from
(Ω′,F ′) to (E, E) is a factorised conditional distribution of X given Y if and only if
for every B ∈ E,

p(·, B) is a factorised conditional probabilty of X ∈ B given Y .

Remark 2.5 (Uniqueness) Uniqueness trivially follows from the uniqueness of con-
ditional distributions.

Theorem 2.4 (Existence) If E is a complete and separable metric space and E =
B(E), then a factorised conditional distribution of X given Y exists.
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Remark 2.6 (Notation) If p is a factorised conditional distribution of X given Y ,
then we also write PX||Y instead of p.

Corollary 2.4.1 (Case distinction formula) For every factorised conditional dis-
tribution PX||Y of X given Y we have

P[{X ∈ B}] =
∫
Ω′

PX||Y (ω
′, B)PY (dω

′) for all B ∈ E.

Proposition 2.2 (Construction from densities) Let X ′ be a random variable on
(Ω,F ,P) taking values in (E′, E ′). Let µ and µ′ be σ-finite measures on (E, E) and
(E′, E ′), respectively. Assume that P(X,X′) possesses a µ⊗ µ′-density f(X,X′).

Define the map fX||X′ : E′ × E → R+ by

fX||X′(x′, x) :=

{
f(X,X′)(x,x

′)

fX′ (x′) if x′ ∈ {fX′ > 0}
0 else.

Then the map p : E′ × E → R+ defined by

p(x′, B) :=

{(
fX||X′(x′, ·)µ

)
[B] if x′ ∈ {fX′ > 0}

ν else

(for arbitrary ν ∈ M1(E, E)) is a factorised conditional distribution of X given X ′.

Theorem 2.5 Let X ′ be a random variable on (Ω,F ,P) taking values in (E′, E ′). Let
p be a factorised conditional distribution of X given X ′. Let f ∈ LR(E ×E′, E ⊗ E ′) be
such that f(X,X ′) ∈ L1

R(Ω,F ,P).

Then there exists a PX′-null set N ′ ∈ E ′ such that

g(x′) :=

∫
E

f(x, x′) p(x′,dx) , x′ ∈ N ′c , and g(x′) := 0 , x′ ∈ N ′ ,

defines a factorised conditional expectation of f(X,X ′) given X ′. In particular,

E[f(X,X ′)||X ′ = x′] =

∫
E

f(x, x′)PX||X′(x′,dx) PX′-a.e. x′ ∈ E′.

Theorem 2.6 (Multilevel models) Let (Ω,F ,P) be a probability space, and for ev-
ery j = 1, . . . , k let Xj be a random variable on (Ω,F ,P) with values in (Ej , Ej).

Assume that for every j = 2, . . . , k there exists a factorised conditional distribution of
Xj given (X1, . . . , Xj−1). Then we have

(i) P(X1,...,Xk) = P(X1,...,Xk−1) ⊗ PXk||(X1,...,Xk−1), and

(ii) P(X1,...,Xk) = PX1 ⊗ PX2||X1
⊗ PX3||(X1,X2) ⊗ · · · ⊗ PXk||(X1,...,Xk−1).
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3 Probability Measures on Infinite Product Spaces
Let T be a non-empty set. Let (Et, Et) be a measurable space, t ∈ T .

The cartesian product of Et, t ∈ T , is defined by

×
t∈T

Et := {(xt)t∈T : xt ∈ Et for all t ∈ T} .

For two subsets S ⊆ U ⊆ T , we defined the map{
πU ;S :×t∈U

Et −→×t∈S
Et

(xt)t∈U 7−→ (xt)t∈S .

If S = {t}, then we also write πU ;t instead of πU ;{t}. If U = T , then we also write πS

and πt instead of πT ;S and πT ;{t}, respectively.

For any set Ω, we define

Pfin(Ω) := system of all finite subsets of Ω,
Pcou(Ω) := system of all countable subsets of Ω,
P◦,fin(Ω) := system of all non-empty and finite subsets of Ω, and
P◦,cou(Ω) := system of all non-empty and countable subsets of Ω.

Definition 3.1 (Product σ-algebra) Let S,U ∈ P◦(T ) with S ⊆ U . The product
σ-algebra

⊗
U ;t∈S Et of Et, t ∈ S, on×t∈U

Et is defined by

⊗
U ;t∈S

Et := σ

( ⋃
t∈S

π−1
U ;t(Et)

)
.

Theorem 3.1 Let µ, µ′ ∈ M1(×t∈T
Et,

⊗
T ;t∈T Et). Then we have µ = µ′ if and only

if
µ ◦ π−1

T ;S = µ′ ◦ π−1
T ;S for all S ∈ P◦,fin(T ).

Definition 3.2 (Projective family) For every S ∈ P◦,fin(T ), let

µS ∈ M1

(
×
t∈S

Et,
⊗
S;t∈S

Et
)
.

Then {µS}S∈P◦,fin(T ) is called projective family if it satisfies the consistency condition

µS = µU ◦ π−1
U ;S for all S,U ∈ P◦,fin(T ) with S ⊆ U . (C1)

Theorem 3.2 (Kolmogorov’s extension theorem) For every t ∈ T , let Et be a
complete and separable metric space and Et be the corresponding Borel σ-algebra.
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Then, for every projective family {µS}S∈P◦,fin(T ) of probability measures

µS ∈ M1

(
×
t∈S

Et,
⊗
S;t∈S

Ft

)
there exists exactly one probability measure

µ ∈ M1

(
×
t∈T

Et,
⊗

T ;t∈T

Et
)

such that
µ ◦ π−1

T ;S = µS for all S ∈ P◦,fin(T ).

Definition 3.3 (Product measure) For every t ∈ T , let µt ∈ M1(Et, Et).

Then, a probability measure µ ∈ M1(×t∈T
Et,

⊗
t∈T Et) is called product measure

of µt, t ∈ T , if it satistfies

µ ◦ π−1
T ;S =

⊗
t∈S

µt for all S ∈ P◦,fin(T ).

In this case, we also write
⊗

t∈T µt instead of µ.

Theorem 3.3 (Uniqueness) For every t ∈ T , let µt ∈ M1(Et, Et).
Then there exists at most one product measure of µt, t ∈ T .

Theorem 3.4 (Existence) For every t ∈ T , let Et be a complete and separable metric
space, Et be the corresponding Borel σ-algebra and µt ∈ M1(Et, Et).
Then there exists (exactly) one product measure of µt, t ∈ T .

Corollary 3.4.1 For every t ∈ T , let Et be a complete and separable metric space, Et
be the corresponding Borel σ-algebra and µt ∈ M1(Et, Et).

Then there exists a probability space (Ω,F ,P) and independent random variables Xt, t ∈
T , on (Ω,F ,P) whose distributions PXt

, t ∈ T , coincide with µt on (Et, Et), t ∈ T .

Corollary 3.4.2 Let (Ω,F ,P) be a probability space. For every t ∈ T , let Xt be
random variables on (Ω,F ,P) taking vlaues in (Et, Et). Then the random variables
Xt, t ∈ T , are independent if and only if P(Xt)t∈T

=
⊗

t∈T PXt
.
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4 Foundations of Stochastic Processes
Let (Ω,F ,P) be a probability space.
Let (E, E) be a measurable space and T 6= ∅ be a set.

Definition 4.1 (Stochastic process) A map X : T × Ω → E is called stochastic
process on (Ω,F ,P) with state space (E, E) and index set T if for every t ∈ T the
map ω 7→ X(t, ω) is (F , E)-measurable.

In this case, one also speaks of an (E, E)-valued process on (Ω,F ,P) with index set
T .

Remark 4.1 (Terminology) Let X = (Xt)t∈T be an (E, E)-valued process on (Ω,F ,P)
with index set T . We will use the following terminology.

For every fixed (t, ω) ∈ T × Ω, Xt(ω) is called state of X at t given outcome ω.

For every fixed t ∈ T , Xt is called t-coordinate of X.

For every fixed ω ∈ Ω, (Xt(ω))t∈T is called path (or trajectory) of X given outcome
ω.

In particular, ET is called paths space of X.

Theorem 4.1 (Random variables and processes) For a map X : T ×Ω → E the
following conditions are equivalent.

(i) The map ω 7→ (Xt(ω))t∈T is (F , E⊗T )-measurable.

(ii) The map ω 7→ πS(X(ω)) = (Xt(ω))t∈S is (F , ES;⊗S)-measurable for every S ∈
P◦,fin(T ).

(iii) The map ω 7→ πt(X(ω)) = Xt(ω) is (F , E)-measurable for every t ∈ T .

Remark 4.2 Thus, every (E, E)-valued process on (Ω,F ,P) with index set T is an
(ET , E⊗T )-valued random variable on (Ω,F ,P), and vice versa.

Definition 4.2 (Distribution of a process) Let X = (Xt)t∈T be an (E, E)-valued
process on (Ω,F ,P) with index set T .

Then, PX = P ◦X−1 is called distribution of X. Moreover, for every S ∈ P◦,fin(T ),
PπS(X) = P(Xt)t∈S

is called finite-dimensional distribution of X with base S.

Theorem 4.2 (Characterisation by finite projections) Let X = (Xt)t∈T and
X ′ = (X ′

t)t∈T be two (E, E)-valued processes with index set T on probability space
(Ω,F ,P) and (Ω′,F ′,P′), respectively.
Then, PX = P′

X′ , if and only if PπS(X) = P′
πS(X′) for all S ∈ P◦,fin(T ).
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Theorem 4.3 (Existence) Let E be a complete and separable metric space and E be
the corresponding Borel σ-algebra.

For every projective family {µS}S∈P◦,fin(T )} there exists a probability space (Ω,F ,P)
and an (E, E)-valued process X = (Xt)t∈T on (Ω,F ,P) with index set T such that
PπS(X) = µS for all S ∈ P◦,fin(T ).

Definition 4.3 A process X = (Xt)t∈T on (Ω,F ,P) is said to possess independent
coordinates if the family {Xt}t∈T of random variables is independent.

Corollary 4.3.1 For a process X = (Xt)t∈T on (Ω,F ,P) the following statements are
equivalent.

(i) X possesses independent coordinates.

(ii) P(Xt)t∈T
=

⊗
t∈T PXt

.

(iii) P(Xt)t∈S
=

⊗
t∈S PXt for all S ∈ P◦,fin(T ).

Corollary 4.3.2 Let E be a complete and separable metric space and E be the corre-
sponding Borel σ-algebra. Moreover, let µt ∈ M1(E, E), t ∈ T .

Then there exists a probability space (Ω,F ,P) and an (E, E)-valued process X = (Xt)t∈T

on (Ω,F ,P) with index set T that possesses independent coordinates and that satisfies
PXt

= µt for all t ∈ T .

Example 4.1 For every µ1 ∈ M1(R,B(R)), we can find by Corollary 4.3.2 a probabil-
ity space (Ω,F ,P) and a real-valued process X = (Xj)j∈N on (Ω,F ,P) with independent
coordinates and PXj = µ1 for all j ∈ N.

Obviously, this process is nothing but a sequence of i.i.d. random variables with
PX1

= µ1.

If in addition
∫
|x|µ1(dx) < ∞, then each of the random variables Xj, j ∈ N, is

contained in L1
R(Ω,F ,P). If E[X1] = 0, then the real-valued process S = (Sn)n∈N0

defined by

S0 := 0 and Sn :=

n∑
j=1

Xj , n ∈ N

is called symmetric random walk with innovation distribution µ1.

For a random variable with a “simple” co-domain as, e.g., R, the distribution PX

provides “full” information on the behavior of X.

The situation is different when the co-domain of X is more complicated. Some qualita-
tive properties of paths may differ significatly for two processes, even with the same
distribution.
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Example 4.2 Let (Ω,F ,P) !
= ([0, 1],B[0,1](R), `|[0,1]) and T := [0, 1]. Let two real-

valued processes X = (Xt)t∈T and X ′ = (X ′
t)t∈T on (Ω,F ,P) be defined by Xt(ω) := 0

and X ′
t(ω) := 1{ω}(t).

Then, PX = PX′ but each path of X is continuous, whereas each path of X ′ has a
discontinuity.

Theorem 4.4 (Inadequacy of the product σ-algebra) Let (E, E) be a measur-
able space and T be a non-empty set. Then, for every A ∈ E⊗T there exists an
S ∈ P◦,cou(T ) such that for all f, g ∈ ET ,

f = g on S , f ∈ A =⇒ g ∈ A .

Remark 4.3 For each countable set S ⊆ [0, 1] and each f ∈ C([0, 1]) there are of
course plenty of functions g ∈ R[0,1] \C([0, 1]) with f = g on S. Thus, by contraposition
of Theorem 4.4, the set C([0, 1]) can indeed not be contained in B(R)⊗[0,1].
The same is true, e.g., for the set of all monotone functions from R[0,1].

Definition 4.4 (Modifications, indistiguishability) Let X = (Xt)t∈T and Y =
(Yt)t∈T be two (E, E)-valued processes on a probability space (Ω,F ,P) with index set T .

The processes X and Y are called modifications of each other if

Xt(ω) = Yt(ω) for P-a.a. ω ∈ Ω, for all t ∈ T .

The processes X and Y are called indistiguishable if

Xt(ω) = Yt(ω) for all t ∈ T , for P-a.a. ω ∈ Ω.

Theorem 4.5 Let X = (Xt)t∈T and Y = (Yt)t∈T be two (E, E)-valued processes on a
probability space (Ω,F ,P) with index set T . Then

(i) X,Y indistiguishable =⇒ X,Y modifications of each other.

(ii) X,Y modifications of each other =⇒ PX = PY .

(iii) X,Y modifications of each other =⇒ X,Y indistinguishable, if one of the
following two conditions is met
(a) T is countable.
(b) T is an interval in R, E is a separable metric space, E is the corresponding

Borel σ-algebra, and P-a.a. paths of X and Y are left-continuous of P-
a.a. paths of X and Y are right-continuous.

Theorem 4.6 (Kolmogorov-Chentsov) Let (E, d) be a complete and separable met-
ric space and E be the corresponding Borel σ-algebra. Moreover, let T be a finite union
of bounded intervals in Rm and X = (Xt)t∈T be an (E, E)-valued process on a probabil-
ity space (Ω,F ,P) with index set T .
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If we can find constants q, δ, C ∈ R>0 such that

E[d(Xs, Xt)
q] ≤ C ‖s− t‖m+δ for all s, t ∈ T ,

then there exists a modification of X whose paths are all continuous.

The modification can even be chosen such that for every γ ∈ (0, δ/q) the paths of the
modification are all Hölder-γ-continuous.

Definition 4.5 (Product measurable) Assume that T is equipped with a σ-algebra
T , and let X be an (E, E)-valued process (Ω,F ,P) with index set T .

The process X is called product measurable if the map X : T ×Ω → E is (T ⊗F , E)-
measurable.

Proposition 4.1 Let T be an interval in R and X = (Xt)t∈T be a real-valued process
(Ω,F ,P) with index set T .

If the paths of X are all left-continuous or all right-continuous, and T is equipped with
the Borel σ-algebra B(T ) = B(T ) ∩ T , then X is product measurable.

Definition 4.6 (Strictly stationary) Let (E, E) be a measurable space and T ∈
P◦(R) be closed under addtion. Then, an (E, E)-valued process X = (Xt)t∈T is called
strictly stationary if

P(Xt1+s,...,Xtk+s) = P(Xt1
,...,Xtk

)

for all k ∈ N and s, t1, . . . , tk ∈ T .

Definition 4.7 (Independent increments) Let T ∈ P◦(R). Then, an (Rm,B(Rm))-
valued process X = (Xt)t∈T is said to possess independent increments if for every
k ≥ 2 and t0, . . . , tk ∈ T with t0 < t1 < · · · < tk the random variables

Xt1 −Xt0 , . . . , Xtk −Xtk−1 are independent.

Definition 4.8 (Increments independent of the intitial state) Let T ∈ P◦(R)
be such that σ := inf T is contained in T . Then, an (Rm,B(Rm))-valued process
X = (Xt)t∈T is said to possess independent increments that are independent
independent of the initial state if for every k ∈ N and t0, . . . , tk ∈ T with σ < t1 <
t1 < · · · < tk the random variables

Xσ, Xt1 −Xσ, . . . , Xtk −Xtk−1 are independent.

Definition 4.9 (Stationary increments) Let T ∈ P◦(R) be closed under addtion.
Then, an (Rm,B(Rm))-valued process X = (Xt)t∈T on a probability space (Ω,F ,P) is
said to possess stationary increments if for every k ∈ N and s, t0, . . . , tk ∈ T with
t0 < · · · < tk, we have

P(Xt1+s−Xt0+s,...,Xtk+s−Xtk−1+s
= P(Xt1−Xt0 ,...,Xtk

−Xtk−1
) .
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Lemma 4.1 Let T ∈ P◦(R) be closed under addition and ∆T := {t − s : s, t ∈
T with s < t}. Moreover, let X = (Xt)t∈T be an (Rm,B(Rm))-valued process on a
probability space (Ω,F ,P).

If X possesses independent increments and for every h ∈ ∆T there exists a µh ∈
M1(Rm,B(Rm)), such that, PXt−Xs = µh for all s, t ∈ T with t − s = h, then X
possesses stationary increments.

Definition 4.10 (Process, centered) Let T be a non-empty set and p ∈ [1,∞).

An (R,B(R))-valued process (Xt)t∈T on a probability space (Ω,F ,P) is called Lp
R-

process if Xt ∈ Lp
R(Ω,F ,P) for all t ∈ T .

An Lp
R-process (Xt)t∈T is called centered if E[Xt] = 0 for all t ∈ T .

Definition 4.11 Let X = (Xt)t∈T be a real-valued process on a probability space
(Ω,F ,P).

If X is an L1
R-process, the its mean function mX : T → R is defined by

mX(t) := E[Xt] .

If X is an L2
R-process, then its covariation function γX : T ×T → R and its variance

function vX : T → R are defined by

γX(s, t) := Cov(Xs, Xt) and vX(t) := Var(Xt) , respectively.

Lemma 4.2 Let T ∈ P◦(R) such that σ := inf T ∈ T . Then, if an L2
R-process

X = (Xt)t∈T possesses independent increments that are independent of the initial state,
we have

γX(s, t) = vX(min{s, t}) for all s, t ∈ T .

Definition 4.12 (Symmetric, positive semi-definite) A map γ : T × T → R
is symmetric if γ(s, t) = γ(t, s) for all s, t ∈ T , and positive semi-definite if∑k

i=1

∑k
k=1 λiλjγ(ti, tj) ≥ 0 for k ∈ N, t1, . . . , tk ∈ T and λ1, . . . , λk ∈ R.

Lemma 4.3 The covariance function γX of any L2
R-process X = (Xt)t∈T is symmetric

and positive semi-definite.

Lemma 4.4 The mean function mX of any strictly stationary L1
R-process X = (Xt)t∈T

is constant.

For the covariance function γX of any strictly stationary L2
R-process X = (Xt)t∈R+

, we
have

γX(s, t) = γX(0, |s− t|) for all s, tR≥0.
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5 Poisson Processes
Definition 5.1 (Poisson process) For every λ ∈ R>0, a (R,B(R))-valued process
N = (Nt)t∈R≥0

on a probability space (Ω,F ,P) with index set R≥0 is called Poisson
process with intensity λ if it possesses the following properties.

(P1) N0 = 0 P-a.s.

(P2) N has independent increments.

(P3) PNt−Ns
= Poissλ(t−s) for all s, t ∈ R≥0 with s < t.

(P4) P-a.a. paths of N are monotonically increasing and right-continuous.

Proposition 5.1 If N = (Nt)t∈R≥0
is a Poisson process on a probability space (Ω,F ,P),

then P-a.a. paths of N take values only in N0.

Remark 5.1 Two Poisson processes with the same intensity possess the same finite
dimensional distributions.

Theorem 5.1 (Existence) Let λ ∈ R>0 and (Wj)j∈N be a sequence of i.i.d. real-
valued random variables on a probability space (Ω,F ,P) with PW1

= Expλ.

Then, using the convention max∅ := maxN := 0, we can define by

Nt := max{k ∈ N :

k∑
j=1

Wj ≤ t} , t ∈ R≥0

a Poisson process N = (Nt)t∈R≥0
with intensity λ.

Proposition 5.2 Let N = (Nt)t∈R≥0
be an (R≥0,B(R≥0))-valued process on a prob-

ability space (Ω,F ,P) that satisfies conditions (P1), (P2), (P4), and assume that
P-a.a. of its paths take values only in N0.

Then, N satisfies condition (P3) for a given λ ∈ R>0 if and only if it satisfies the
following conditions (P5)-(P7).

(P5) N has stationary increments.

(P6) N is an L1
R-process and E[N1] = λ.

(P7) limh↘0 P[{Nh ≥ 2}]/h = 0.

Corollary 5.1.1 Let N = (Nt)t∈R≥0
be a Poisson process with intensity λ ∈ R>0 on

a probability space (Ω,F ,P). Then, for P-a.a. ω ∈ Ω, there does not exist any t ∈ R>0

such that Nt(ω)− lims↗t Ns(ω) ≥ 2.
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6 Brownian Motion
Definition 6.1 Let T be a nonempty set. A (R,B(R))-valued process X = (Xt)t∈T

on a probability space (Ω,F ,P) with index set T is called a Gaussian process if
all of its finite-dimensional distributions are normal distributions, i.e., if for every
S ∈ P◦,fin(T ),

PπS(X) is a #S-variate normal distribution.

Theorem 6.1 The distribution of a Gaussian process X = (Xt)t∈T is uniquely deter-
mined by the mean function and the covariance function of X.

Theorem 6.2 (Existence) For a non-empty set T , let m : T → R be an arbitrary
function and γ : T × T → R be a symmetric and positive semi-definite function.

Then there exists a probability space (Ω,F ,P) and a Gaussian process X = (Xt)t∈T on
(Ω,F ,P) with mX ≡ m and γX = γ.

Definition 6.2 (Brownian motion) An (R,B(R))-valued process B = (Bt)t∈R≥0
on

a probability space (Ω,F ,P) with index set R≥0 is called 1-dimensional (standard)
Brownian motion if it possesses the following properties.

(B1) B0 = 0 P-a.s..

(B2) B has independent increments.

(B3) PBt−Bs
= N0,t−s for all s, t ∈ R≥0 with s < t.

(B4) P-a.a. paths of B are continuous.

Remark 6.1 Two Brownian motions possess the same finite-dimensional distributions.

Proposition 6.1 Let B = (Bt)t∈R≥0
be a Brownian motion on a probability space

(Ω,F ,P). Then

(i) PBt
= N0,t for all t ∈ R≥0.

(ii) B is a Lp
R-process for every p ∈ [1,∞).

(iii) mB(t) := E[Bt] = 0 and vB(t) := Var[Bt] = t for all t ∈ R≥0.

(iv) γB(s, t) := Cov(Bs, Bt) = min{s, t} for all s, t ∈ R≥0.

All of these four statements are valid even without assumption (B4).

Proposition 6.2 Let B = (Bt)t∈R≥0
be an (R,B(R))-valued process on a probability

space (Ω,F ,P) that satisfies condition (B1). Then the process B satisfies (B2) & (B3)
if and only if it satisfies the following condition (B5).

P(Bt1
,...,Btk

) = N0,Vt1,...,tk
for all k ∈ N and t1, . . . , tk ∈ R≥0 with t1 < · · · < tk,

(B5)
where 0 := (0, . . . , 0) and Vt1,...,tk := (min{ti, tj})1≤i,j≤k.
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Remark 6.2 In the framework of Proposition 6.2, condition (B5) can be written as

B is a centered Gaussian process with covariance funciton γB(s, t) = min{s, t}.

In particular, every Brownian motion possesses property (B6).

Theorem 6.3 (Existence) There exists a probability space (Ω,F ,P) and a Brownian
motion B = (Bt)t∈R≥0

on (Ω,F ,P).

B can be chosen such that P-a.a. of its paths are locally Hölder-γ-continuous for every
γ ∈ (0, 1/2).

Proposition 6.3 (Transformations) Let B = (Bt)t∈R≥0
be a Brownian motion on

a probability space (Ω,F ,P). Moreover, let c ∈ R \ {0} and s ∈ R>0. Then also the
process B̃ = (B̃t)t∈R≥0

is a Brownian motion if it is defined by

(i) B̃t :=
1
cBc2t, t ∈ R≥0.

(ii) B̃t := −Bt, t ∈ R≥0.

(iii) B̃t := Bt+s −Bs, t ∈ R≥0.

(iv) B̃t := tB1/t, t ∈ R>0, and B̃0 := B0.

Theorem 6.4 (Paley-Wiener-Zygmund) Let B = (Bt)t∈R≥0
be a Brownian mo-

tion on a probability space (Ω,F ,P) and γ ∈ (1/2,∞).

Then, P-a.a. paths of B are not Hölder-γ-continuous at any point.
In particular, P-a.a. paths of B are not differentiable at any point.

Definition 6.3 (d-dimensional Brownian motion) An (Rd,B(Rd))-valued process
B = (Bt)t∈R≥0

on a probability space (Ω,F ,P) with index set R≥0 is called d-dimensional
(standard) Brownian motion if it possesses the following properties.
(B1) B0 = 0 P-a.s..

(B2) B has independent increments.

(B3) PBt−Bs
= N0,(t−s)Id for all s, t ∈ R≥0 with s < t.

(B4) P-a.a. paths of B are continuous.

Theorem 6.5 If B = (B(1), . . . , B(d)) is a d-dimensional Brownian motion on a proba-
bility space (Ω,F ,P), then its coordinates B(1), . . . , B(d) are independent 1-dimensional
Brownian motions.

If, conversely, B(1), . . . , B(d) are independent 1-dimensional Brownian motions on a
probability space (Ω,F ,P), then B := (B(1), . . . , B(d)) is a d-dimensional Brownian
motion.

Corollary 6.5.1 (Existence) There exists a probability space (Ω,F ,P) and a d-
dimensional Brownian motion B = (Bt)t∈R≥0

on (Ω,F ,P).
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7 Markov Processes
Let (E, E) be a measurable space.
Let T ∈ P◦(R).
Let (Ω,F ,P) be a probability space.

Definition 7.1 (Filtration) For every t ∈ T , let Ft be a sub-σ-algebra of F . Then
the family (Ft)t∈T is called a filtration in F if

Fs ⊆ Ft for all s, t ∈ T with s ≤ t.

For two filtrations F = (Ft)t∈T and F′ = (F ′
t)t∈T in F , we henceforth write F ⊆ F′ if

Ft ⊆ F ′
t for all t ∈ T .

Definition 7.2 (Adaptedness) Let F = (Ft)t∈T be a filtration in F and X =
(Xt)t∈T be an (E, E)-valued process (Ω,F ,P).

The process X is said to be adapted to the filtration F (short: F-adapted) if Xt is
(Ft, E)-measurable for every t ∈ T .

Definition 7.3 (Natural filtration) Let X = (Xt)t∈T be a (E, E)-valued process on
(Ω,F ,P), and set

FX
S := σ(Xt, t ∈ S) for all S ∈ P◦(T ),

FX
t := FX

≤t := FX
(∞,t]∩T for all t ∈ T ,

FX
≥t := FX

[t,∞)∩T for all t ∈ T .

The filtration FX := (FX
T )t∈T is called natural filtration of X.

Definition 7.4 (Markov process) Let X = (Xt)t∈T be an (E, E)-valued process on
(Ω,F ,P) and F = (Ft)t∈T be a filtration in F .

The process X is called Markov process w.r.t. F (short: F-Markov process) if it
is F-adapted and satistfies

P[{Xt ∈ A}|Fs] = P[{Xt ∈ A}|Xs] P-a.s. for all s, t ∈ T with s ≤ t and A ∈ E.

If F coincides with the natural filtration FX of X, then X is simply referred to as
Markov process.

Proposition 7.1 (Equivalent properties) For a (E, E)-valued process X = (Xt)∈T

on (Ω,F ,P), the following five conditions are equivalent.

(i) For all k ∈ N, t1, . . . , tk, t ∈ T with t1 < · · · < tk < t and A ∈ E

P[{Xt ∈ A}|(Xt1 , . . . , Xtk)] = P[{Xt ∈ A}|Xtk ] P-a.s..
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(ii) X possesses the Markov property for F := FX .

(iii) For all s ∈ T and B ∈ FX
≥s

P[B|FX
s ] = P[B|Xs] P-as..

(iv) For all s ∈ T , Ts := [s,∞) ∩ T , and bounded f ∈ LR(E
Ts , E⊗Ts)

E[f(πts(X))|FX
s ] = E[f(πTs

(X))|Xs] P-a.s..

(v) For all s ∈ T , A ∈ FX
s and B ∈ FX

≥s

P[A ∩B|Xs] = P[A|Xs]P[B|Xs] P-a.s..

Definition 7.5 (Transition probability) Let X = (Xt)t∈T be an (E, E)-valued
Markov process on (Ω,F ,P).

If, for s, t ∈ T with s ≤ t, there exists a factorised conditional distribution of Xt given
Xs, then it is referred to as transition probability of the Markov process X from s
to t.

Proposition 7.2 Let X = (Xt)t∈T be an (E, E)-valued Markov process on (Ω,F ,P).
Assume that for all s, t ∈ T with s ≤ t there exists a factorised conditional distribution
PXt||Xs

of Xt given Xs. Then

(i) PXt||Xt
(x, ·) = δx[·] for all t ∈ T and x ∈ E.

(ii) PXt||Xs
= PXu||Xs

PXt||Xu
for all s, u, t ∈ T with s ≤ u ≤ t.

Definition 7.6 A family P = (ps,t)s,t∈T :s≤t of kernels from (E, E) to (E, E) is called
a Markov transition function on (E, E) if

(i) pt,t(x, ·) = δx[·] for all t ∈ T and x ∈ E,

(ii) ps,t = ps,upu,t for s, u, t ∈ T with s ≤ u ≤ t.

In the framework of Definition 7.5, PX := (PXt||Xs
)s,t∈T :s≤t is called Markov tran-

sition function of the Markov process X.

Lemma 7.1 (Markov property as transition probability) Let X = (Xt)t∈T be
an (E, E)-valued Markov process on (Ω,F ,P) and t1, . . . , tk, t ∈ T with t1 ≤ · · · ≤ tk ≤
t.

Then, if there exists a factorised conditional distribution PXt||Xtk
of Xt given Xtk ,

PXt||(Xt1 ,...,Xtk
) := PXt||Xtk

is a factorised conditional distribution of Xt given (Xt1 , . . . , Xtk).
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Proposition 7.3 (Finite-dimensional distributions) Let X = (Xt)t∈T be an (E, E)-
valued Markov process on (Ω,F ,P) and t0, . . . , tk ∈ T with t0 ≤ · · · ≤ tk.

Assume that there exists a factorised conditional distribution PXtj
||Xtj−1

of Xtj given
Xtj−1

for every j = 2, . . . , k

(i) P(Xt1
,...,Xtk

) = PXt1
⊗ PXt2

||Xt1
⊗ · · · ⊗ PXtk

||Xtk−1
,

and for every j = 1, . . . , k

(ii) P(Xt1
,...,Xtk

) = (PXt0
PXt1

||Xt0
)⊗ PXt2

||Xt1
⊗ · · · ⊗ PXtk

||Xtk−1
, and

(iii) P(Xt1
,...,Xtk

)||Xt0
= PXt1

||Xt0
⊗ · · · ⊗ PXtk

||Xtk−1
.

Theorem 7.1 (Existence) Asumme that E is a complete and separable metric space
and E is the corresponding Borel-σ algebra. Moreover, assume that σ := inf T ∈ T .

Then, for every µσ ∈ M1(E, E) and every Markov transition function P = (ps,t)s,t∈T :s≤t

on (E, E), there exists a probability space (Ω,F ,P) and an (E, E)-valued Markov process
X = (Xt)t∈T on (Ω,F ,P) with initial distribution PXσ

= µσ and Markov transition
function P.

Theorem 7.2 Assume that σ := inf T ∈ T . Let X = (Xt)t∈T be a (Rm,B(Rm))-
valued process on (Ω,F ,P).

If X possesses independent increments that are independent of the initial state, then X
is a Markov process.

Example 7.1 Let B = (Bt)t∈R≥0
be a Brownian motion on (Ω,F ,P), and let P =

(ps,t)s,t∈R≥0:s≤t be a family of kernels from (R,B(R)) to (R,B(R)) that are given by

ps,t(x,A) := Nx,t−s[A] , (x,A) ∈ R× B(R) .

Then, B is a Markov process with Markov transition function P.

Example 7.2 Let N = (Nt)t∈R≥0
be a Poisson process with intensity λ ∈ R>0 on

(Ω,F ,P), and let P = (ps,t)s,t∈R≥0:s≤t be a family of kernels from (R,B(R)) to (R,B(R))
that are given by

ps,t(x,A) := Poissλ(t−s)[A− x] , (x,A) ∈ R× B(R) .

Then, N is a Markov process with Markov transition function P.
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8 Martingales, Sub- and Supermartingales
Let T ∈ P◦(R).
Let (Ω,F ,P) be a probability space.

Definition 8.1 (Martingale) Let F = (Ft)t∈T be a filtration in F and X = (Xt)t∈T

be an L1
R-process on (Ω,F ,P). If the process X is F-adapted then it is called

(i) F-martingale if E[Xt|Fs] = Xs P-a.s. ∀s, t ∈ T with s ≤ t.

(ii) F-submartingale if E[Xt|Fs] ≥ Xs P-a.s. ∀s, t ∈ T with s ≤ t.

(iii) F-supermartingale if E[Xt|Fs] ≤ Xs P-a.s. ∀s, t ∈ T with s ≤ t.

If X is in addition an Lp
R-process for some p ∈ (1,∞). then one speaks of an Lp

R-F-
(sub-, super-) martingale.

If F is the natural filtration FX of X, then one simply speaks of a (sub-, super-)
martingale.

Proposition 8.1 (Transformations) Let F = (Ft)t∈T be a filtration in F , and X =
(Xt)t∈T and (Yt)t∈T be two (R,B(R))-valued processes on (Ω,F ,P). Then

(i) X is a F-supermartingale if and only if −X := (−Xt)t∈T is a F-submartingale.

(ii) If X and Y are F-martingales and a, b ∈ R, then aX + bY := (aXt + bYt)t∈T is
a F-martingale.

(iii) If X and Y are F-supermartingales and a, b ∈ R≥0, then aX + bY := (aXt +
bYt)t∈T is a F-supermartingale.

(iv) If X and Y are F-submartingales and a, b ∈ R≥0, then aX+bY := (aXt+bYt)t∈T

is a F-submartingale.

(v) If X and Y are F-supermartingales, then X ∧ Y := (min{Xt, Yt})t∈T is a F-
supermartingale.

(vi) If X and Y are F-submartingales, then X ∧ Y := (max{Xt, Yt})t∈T is a F-
submartingale.

(vii) If X is an F-martingale and f : R → R is a convex function such that the process
Y := (Yt)t∈T defined by Yt := f(Xt), t ∈ T, is an L1

R-process, then Y is an
F-submartingale.

Lemma 8.1 Let ξ ∈ L1
R(Ω,F ,Ω) and F = (Ft)t∈T be a filtration in F .

Then, the process X = (Xt)t∈T defined by Xt := E[ξ|Ft], t ∈ T is a F-martingale.

Proposition 8.2 Let F = (Ft)t∈T be a filtration in F and X = (Xt)t∈T be a F-adapted
L1
R-process on (Ω,F ,P). Then
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(i) If P-a.a. paths of X are monotonically increasing, then X is a F-submartingale.

(ii) If P-a.a. paths of X are monotonically decreasing, then X is a F-supermartingale.

Example 8.1 Every Poisson process is a submartingale.

Proposition 8.3 Assume that σ := inf T ∈ T , and let X = (Xt)t∈T be a L1
R-process

on (Ω,F ,P).

Then if X possesses a constant mean function as well as independent increments that
are independent of the initial state, X is a martingale.

Example 8.2 Every 1-dimensional Brownian motion is a martingale.

Example 8.3 (Symmetric random walk) Let S = (Sn)n∈N0
be the symmetric ran-

dom walk defined by

• S0 := 0,

• Sn :=
∑n

j=1 Xj , n ∈ N,

where (Xj)j∈N is a sequence of independent random variables in L1
R(Ω,F ,P) such that

E[Xj ] = 0 for all j ∈ N. Moreover, let the filtration FX = (FX
n )n∈N0

be given by

• FX
0 := {∅,Ω},

• FX
n := σ(X1, . . . , Xn), n ∈ N.

Then, S is a FX-martingale.

Definition 8.2 (Predictable process) Let F = (Fn)n∈N0 be a filtration in F and
H = (Hn)n∈N be a process on (Ω,F ,P) taking values in a measurable space (E, E).
Then, H is called F-predictable if Hn is (Fn−1, E)-measurable for every n ∈ N.

Definition 8.3 (Martingale transformation) Let F = (Fn)n∈N0 be a filtration in
F , and X = (Xn)n∈N0

and H = (Hn)n∈N are two (R,B(R))-valued processes on
(Ω,F ,P).

Then, the process H •X = (H •Xn)n∈N0
defined by

H •X0 := 0 and H •Xn :=

n∑
j=1

Hj(Xj −Xj−1) , n ∈ N

is called martingale transformation of X w.r.t. H.

Remark 8.1 The process H = (Hn)n∈N will be called locally bounded if for every
n ∈ N there exists some cn ∈ R>0 such that |Hn| ≤ cn P-a.s..
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Proposition 8.4 (Properties) Let F = (Fn)n∈N0
be a filtration in F , and X =

(Xn)n∈N0
and H = (Hn)n∈N be two (R,B(R))-valued processes on (Ω,F ,P). Moreover,

let H •X be the martingale transformation of X w.r.t. H.

(i) If H is F-predictable, R≥0-valued and locally bounded, then H • X is a F-
submartingale if X is a F-submartingale.

(ii) If H is F-predictable, R≥0-valued and locally bounded, then H • X is a F-
supermartingale if X is a F-supermartingale.

(iii) If H is F-predictable, R≥0-valued L2
R-process, then H •X is a F-submartingale if

X is a L2
R-F-submartingale.

(iv) If H is F-predictable, R≥0-valued L2
R-process, then H •X is a F-supermartingale

if X is a L2
R-F-supermartingale.

(v) If H is F-predictable and locally bounded, then H •X is a F-martingale if X is a
F-martingale.

(vi) If H is a F-predictable L2
R-process, then H • X is a F-martingale if X is a

L2
R-F-martingale.

Theorem 8.1 (Doob decomposition) Let F = (Fn)n∈N0 be a filtration in F , and
X = (Xn)n∈N0

be a F-adapted L1
R-process on (Ω,F ,P). Then

(i) On (Ω,F ,P), there exist a F-martingale M = (Mn)n∈N0
with M0 = 0 P-a.s. and

a F-predictable L1
R-process A = (An)n∈N such that Xn = X0+Mn+An P-a.s. for

all n ∈ N0, where A0 := 0.

(ii) The decomposition in (i) is P-a.s. unique and has the form

An =

n∑
j=1

E[Xj −Xj−1|Fj−1] =

n∑
j=1

E[Xj |Fj−1]−Xj−1 P-a.s.

Mn = Xn −An −X0 =

n∑
j=1

Xj − E[Xj |Fj1 ] P-a.s.

(iii) X is a F-submartingale if and only if P-a.a. paths of A are monotonically in-
creasing.

(iv) X is a F-supermartingale if and only if P-a.a. paths of A are monotonically
decreasing.

Definition 8.4 (Compensator) In the framework of Theorem 8.1, the P-a.s. unique
F-predictable process A is called compensator of X (w.r.t. F).
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Corollary 8.1.1 Let F = (Fn)n∈N0
be a filtration in F and X = (Xn)n∈N0

be a L2
R-F-

martingale on (Ω,F ,P).

Then, there exist a centered F-martingale M = (Mn)n∈N0 with M0 = 0 P-a.s. and a
F-predictable L1

R-process A = (An)n∈N such that

X2
n = X2

0 +Mn +An P-a.s. for all n ∈ N0,

where A0 := 0.
This decomposition of the process X2 := (X2

n)n∈N is P-a.s. unique and P-a.a. paths of
A are monotonically increasing.

Definition 8.5 (Quadratic variation process) In the framework of Corollary 8.1.1,
the P-a.s. unique monotonically increasing and F-predictable process A is called quadratic
variation process of X. We also write 〈X〉 and 〈X〉n instead of A and An, respec-
tively.

Proposition 8.5 Let F = (Fn)n∈N0 be a filtration in F and X = (Xn)n∈N0 be a L2
R-F-

martingale on (Ω,F ,P). Then, the following assertions hold true for the quadratic
variation process 〈X〉 = (〈X〉n)n∈N0

of X.

(i) E[〈X〉n] = E[X2
n]− E[X2

0 ] = E[(Xn −X0)
2] = Var[Xn −X0] for all n ∈ N0.

(ii) 〈X〉n − 〈X〉n−1 = E[(Xn −Xn−1)
2|Fn−1] P-a.s. for all n ∈ N.

(iii) 〈X〉n =
∑n

j=1 E[(Xj −Xj−1)
2|Fj−1] P-a.s. for all n ∈ N.

Example 8.4 (Symmetric random walk) Let S = (Sn)n∈N0 be the symmetric ran-
dom walk defined by S0 := 0 and Sn :=

∑n
j=1 Xj , n ∈ N, where (Xj)j∈N is a sequence

of independent random variables from L1
R(Ω,F ,P) with E[Xj ] = 0, j ∈ N.

According to Example 8.3, S is a (L2
R-) FX-martingale.

For the quadratic variation process 〈S〉 of S, we have

〈S〉n =
n∑

j=1

E[X2
j ] P-a.s. for all n ∈ N.

If the innovations Xj , j ∈ N, are identically distributed (or if, at least, all of them
possess the same 2-nd moment), then specifically

〈S〉n = nE[X2
1 ] = nVar[X1] P-a.s. for all n ∈ N.

Definition 8.6 (Stopping time) Let F = (Ft)t∈T be a filtration in F .
A map τ : Ω → T ∪ {+∞} is called stopping time w.r.t. F (short: F-stopping
time) if {τ ≤ t} ∈ Ft for all t ∈ T .
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Proposition 8.6 Let F = (Ft)t∈T be a filtration in F and τ and σ be two F-stopping
times. Then also the maps τ ∧ σ, τ ∨ σ : Ω → T ∪ {∞} defined by

τ ∧ σ(ω) := min{τ(ω), σ(ω)} , ω ∈ Ω

τ ∨ σ(ω) := max{τ(ω), σ(ω)} , ω ∈ Ω

are F-stopping times. If T is contained in R≥0 and closed under addition, then also
the map τ + σ : Ω → T ∪ {∞} defined by

(τ + σ)(ω) := τ(ω) + σ(ω) , ω ∈ Ω

is a F-stopping time.

Lemma 8.2 Let F = (Ft)t∈T be a filtration in F and τ be an F-stopping time. Then,
the following system of sets is a sub-σ-algebra of F

Fτ := {A ∈ F : A ∩ {τ ≤ t} ∈ Ft for all t ∈ T} .

Definition 8.7 (σ-algebra of the τ-history) Let F = (Ft)t∈T be a filtration in F
and τ be an F-stopping time.
Then, Fτ defined by Lemma 8.2 is called σ-algebra of the τ-history.

Example 8.5 (Hitting time) Let F = (Fn)n∈N0
be a filtration in F , and X =

(Xn)n∈N0
be an F-adapted process taking values in a measurable space (E, E).

Then, for every A ∈ E,

τA(ω) := min{n ∈ N0 : Xn(ω) ∈ A} , ω ∈ Ω

defines an F-stopping time τA, where we set min∅ := ∞.

Remark 8.2 (Notation) For any process X = (Xn)n∈N0
and any stopping time τ

w.r.t. a filtration F = (Fn)n∈N0
, we will henceforth use the notation

Xτ (ω) := Xτ(ω)(ω) , ω ∈ {τ ∈ N0} ,

and as before Fτ denotes the σ-algebra of the τ -history.

Theorem 8.2 (Optional sampling) Let F = (Fn)n∈N0 be a filtration in F , let X =
(Xn)n∈N0 be an F-adapted L1

R-process on (Ω,F ,P), and let σ and τ be two F-stopping
time with σ ≤ τ . If X is an F-martingale (-submartingale, -supermartingale) and τ is
P-a.s. bounded, then

E[Xτ |Fσ] = (≥,≤)Xσ P-a.s.
and in particular E[Xτ ] = (≥,≤)E[Xσ].

Corollary 8.2.1 (Martingale test) Let F = (Fn)n∈N0 be a filtration F and X =
(Xn)n∈N0

be an F-adapted L1
R-process on (Ω,F ,P).

Then, X is an F-martingale if and only if E[Xτ ] = E[X0] for every P-a.s. bounded
F-stopping time τ .
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Definition 8.8 For any filtration F = (Fn)n∈N0
in F and any n ∈ N0, we set

Fτ
n := Fτ∧n .

Definition 8.9 (Stopped process) Let F = (Fn)n∈N0 be a filtration in F . For any
F-stopping time τ and any F-adapted process X = (Xn)n∈N0 on (Ω,F ,P) taking values
in a measurable space (E, E), the process Xτ = (Xτ

n)n∈N0
defined by

Xτ
n(ω) := Xτ∧n(ω) = Xmin{n,τ(ω)}(ω)

is said to be the corresponding stopped process.

Theorem 8.3 (Optional stopping) Let F = (Fn)n∈N0
be a filtration in F and τ

be a F-stopping time. Moreover, let X = (Xn)n∈N0 be a F-adapted (R,B(R))-valued
process on (Ω,F ,P).

If X is a martingale (submartingale, supermartingale) w.r.t. F, then the stopped process
Xτ = (Xτ

n)n∈N0
is a martingale (submartingale, supermartingale) w.r.t. both F and Fτ .

Example 8.6 Let (Xj)j∈N be a sequence of i.i.d. real-valued random variables on
(Ω,F ,P) with PX1

= 1
2δ−1 + 1

2δ1, and FX = (FX
n )n∈N0

be given by FX
0 := {∅,Ω},

FX
n := σ(X1, . . . , Xn), n ∈ N. Set S0 := 0, Sn :=

∑n
j=1 Xj , n ∈ N. S = (Sn)n∈N0

is an
FX-martingale. For a, b ∈ Z with a < 0 and b > 0, let

• τa := min{n ∈ N0 : Sn = a},

• τb := min{n ∈ N0 : Sn = b},

• τa,b := τa ∧ τb.

We know that τa, τb, τa,b are FX-stopping times. For these stopping times, we have

(i) P[{τa,b = τa}] = b/(|a|+ b),

(ii) E[τa,b] = |a|b,

(iii) E[τa] = ∞.
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