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1 Conditional Expectations
Let (Q, F,P) be a probability space.

Definition 1.1 (Conditional expectation) Let X € /.%(Q,]:, P) and G be a sub-o-
algebra of F.

A random variable Z € K}E(Q,Q,P‘g) is called conditional expectation of X given
G ifE[Z1g] = E[X1g] for all G € G.

Theorem 1.1 (Existence and uniqueness) Let X € E}E(QJ:, P) and G be sub-o-
algebra of F. Then

(i) there exists a conditional expectation of X given G, and
(ii) if Z1,Z> are conditional expectations of X given G, then Zy = Zs P-a.s..

Remark 1.1 (Notation) Let X € £}ﬁ(§2,]-', P) and G be a sub-c-algebra of F. If Z
is a conditional expectation of X given G, then we also write E[X|G] instead of Z.

Remark 1.2 (Relation to conditional expected value) Let G be a sub-o-algebra
of F. For each G € G the conditional expected value of X € E%(Q,]—", P) given the
event G can be determined by just knowing the conditional expectation E[X|G].

More precisely, for each G € G with P[G] > 0, we have

as E[X|G] = E[X16]/P[G] = E[E[X|G]1¢]/P[C].

Example 1.1 Let {G;}icr be a partition of Q consisting of countably many sets from
F. Then, for every X € L%(Q,}', P) a conditional expectation of X give o({G;}icr) is
given by > .. E[X|Gi]lg,. In particular,

E[X|o({Gi}ier)] = ZE[X|Gi]]lGi P-a.s..
el

Proposition 1.1 Let X, X, X5 € LZ}E(Q,J-'7 P), a,a1,a9 € R, and G,G1, Gy be sub-o-
algebras of F. Then the following assertions hold true, where in (i) we tacitly assume
(w.l.o.g.) that the pointwise additions are well defined.

(i) E[X|G] = a P-a.s. if X = o P-a.s.

(ii) Elay X1 + 02 X3|G] = 01 E[X1|G] + 02E[X3|G] P-a.s.
(iii) E[X|G]* < E[X*|G] P-a.s.
(iv) E[X|G] = X P-a.s. if X € LL(Q,G,Pig)



(v) [EIXIGNI, < IXI, (i.c., EJE[X|G]] < E[X]])
(vi) E[E[X|G1]G2] = E[E[X|G][G1] = E[X|G1] B-a.s. if Gi € G

(vii) E[E[X|G]] = E[X]

(viii) E[X1|G] < E[X2|G] P-a.s. if X1 < X5 P-a.s.

(iz) |E[X|G)| < E[|X||G] P-a.s.
(x) E[X'X|G] = X'E[X|G] for X' € Lx(Q,G) with X'X € LLQ, F,P)
(zi) E[X|G] = E[X] P-a.s. if o(X) and G are independent

(zii) E[X|G] = E[X] P-a.s. if P|G] € {0,1} for all G € G

Definition 1.2 (Conditional probability) Let A € F and G be a sub-c-algebra of
F. Every conditional expectation of 14 given G is called conditional probability of
A given G.

Remark 1.3 (Notation) Let A € F and G be sub-o-algebra of F. If Z is a condi-
tional expectation of A given G, then we also write P[A|G] instead of Z or E[1 4|G].

Remark 1.4 (Conditioning on random variables) Let X € E];T(Q,]:, P) and A €
F. Moreover, let Y be a random variable on (2, F,P).

(i) If Z is a conditonal expectation of X given Y, then we also write E[X|Y] instead
of Z or E[X|o(Y)].

(ii) If Z is a conditional probability of A given Y, then we also write P[A|Y] instead
of Z or E[14]Y].

Let Y be a random variable on (2, F,P) with values in a measurable space (€', F").
Definition 1.3 (Factorised conditioning) Let X € E%ﬁ(ﬂ,}j P) and A € F.

(i) A function g € Lg(Y, F') is called factorised conditional expectation of X
given Y if g(Y) = E[X|Y] P-a.s..

(it) A function g € Lg(Y', F') is called factorised conditional probability of A
given Y if g(Y) = P[A]Y] P-a.s..

Theorem 1.2 (Existence and uniqueness) Let X € E}E(Q,]ﬂ P) and A € F.

(i) There exists a Py -a.s. unique factorised conditional expectation of X given Y.

(ii) There exists a Py -a.s. unique factorised conditional probability of A given Y.

Remark 1.5 (Notation) Let X € E%(Q,]—", P) and A € F.



(i) If g is a factorised conditional expectation of X given Y, then we also write

E[X||Y = -] instead of g(-).

(ii) If g is a factorised conditional probability of A given Y, then we also write
P[A|]Y = -] instead of g(-)

Theorem 1.3 (Insertion rule) Let X be a random variable on (Q, F,P) with val-
ues in a measurable space (E,E). Let f € Lx(E x Q,€ x F') and assume that
FXY) € LL(Q, F,P).

If X and Y are independent, then there exists a Py-null set N' € F' such that
g(w') == E[f(X,w)],w € X\ N, and g(w') := 0, o' € N’, defines a function
g€ E%(Q’,}"’,]P’y) that is a factorised conditional expectation of f(X,Y) given Y.

In this case, we have in particular that

Elf(X,Y)||Y =] = E[f(X,w)] Py-a.a. ' € Q.



2 Conditional Distributions

Definition 2.1 (Probability kernel) Let (1, F1) and (2, F2) be mb. spaces. A
map p : Q1 X Fa — R is called (probability) kernel from (21,F1) to (Qa, F2) if it
satistfies

(Kl) p<7A2) € C@(Ql,fl) fO’I“ all Ay € Fa, and
(K2) p(wi,-) € M1(Q9,F2) for all wy € Q4.

Proposition 2.1 (Product of kernels) Let (Q;,F;), j = 1,2,3, be mb. spaces.
Let po;1 be a kernel from (Q,F1) to (Q2,F2), and psjr2 be a kernel from (21 x
Oy, F1 ® Fa) to (N3, F3). Then the right-hand side of

P21 ® p3jr,2(wi, Az3)
12/ / L4, ., ((w2,ws3)) 31,2 ((wr, wa), dws) pajr (wi, dws)
Q, Jas

=/ 31,2 (w1, w2), (A2,3)w,) P2y (wi, dws)
Qo

is well defined for all w1 € Qq, Az 3z € Fo ® F3, and the resulting map
Pop @ P31zt 1 X (Fa ® F3) — Ry
is a kernel from (Qq,F1) to (Qg x Q3, Fa @ F3).

Definition 2.2 (Product of kernels) In the framework of Proposition 2.1, the ker-
nel paj1 @ paj1,2 from (Q1, F1) to (Qo x Q3, Fo ® F3) defined is called product of paj;
and p3|1)2.

Corollary 2.0.1 (Concatenation of kernels) Let (Q2;,F;), j =1,2,3, be mb. spaces.
Let poj1 be a kernel from (21, F1) to (2, F2), and p3j2 be a kernel from (Qa, F2) to

sThen the map paj1p32 : 41 X F3 — R, defined by

Poj1Psj2(wr, A3) 12/ p3j2(wa; A3) poj1 (Wi, dws)
Q2

is a kernel from (Q1,F1) to (Q3,F3).

Definition 2.3 (Concatenation of kernels) In the framework of Corollary 2.0.1,
the kernel paj1pgj2 from (1, F1) to (23, F3) defined is called concatenation of pyj;
and p3|2.

Corollary 2.0.2 (Concatenation with a measure) Let (Q1,F1) and (Qg,F2) be
measurable spaces. Let py be a probability measure on (1, F1), and pa; be a kernel



from (1, F1) to (2, F2).

Then the map pipa; : Fo — R, defined by

papoi[Az] i= [ por(wi, A2) pr(dws)
Q1

is a probability measure on (Qa, Fa).

Definition 2.4 (Concatenation with a measure) In the framework of Corollary 2.0.2,
the probability measure p1poy from (Q2, F2) defined is called concatenation of i
and Py .

Corollary 2.0.3 (Product with a measure) Let (Qq,F1) and (Qga, F2) be measur-
able spaces. Let puy be a probability measure on (Q1, F1), and poy be a kernel from
(1, F1) to (Qo, F2). Then the right-hand side of

p1 @ poyi[Ai 2] == /Q /Q La,, ((W17W2)) Papi (Wi, dwz) i (dewn)
:/ a1 (w1, (A1,2)w; ) o1 (dwy)
Q2

is well defined for all A1 2 € F1 ® Fa, and the resulting map
1 @ payy 1 F1 @ Fa — Ry
is a probability measure on (1 X Qa, F1 & Fa).

Definition 2.5 (Product with a measure) In the framework of Corollary 2.0.3,
the probability measure py @ paj1 on (1 x Qo, F1 @ Fa) defined is called product of
w1 and poj;.

Remark 2.1 (Tonelli) Integration and the product/concatenation of a kernel is com-
mutative.

Remark 2.2 (Associativity) Products and concatenations of kernels are associative.

Let (92, F,P) be a probability space and G C F be a sub-c-algebra. Let X be a
random variable on (2, F,P) taking values in a measurable space (E, ).

Definition 2.6 (Conditional distributions) A4 kernel P from (,G) to (E,E) is
called conditional distribution of X given G if for every fized B € &,

P(-,B) is a conditional probability of {X € B} given G.

If G is generated by a random variable Y on (Q, F,P), then we speak of a conditional
distribution of X given Y.



Remark 2.3 (Notation) If P is a conditional distribution of X of G, then we also
write Px g instead of P.

Theorem 2.1 (Uniqueness) For any two conditional distributions Py, Py of X given
G, we have

(i) Pi(w,B) = Py(w,B) P-a.e. weQ, forall Be&, and
(i) Py(w,B) = Py(w,B) for all B € &, P-a.e. we Q, if £ =0(&)
for some countable system &y C & being closed under intersections.

Theorem 2.2 (Existence) If E is a complete and separable metric space and €& =
B(E), then a conditional distribution of X given G exists.

Theorem 2.3 Let P be a conditional distribution of X given G, and X' be a (G,&’)-
measurable random variable on (2, F,P) with values in (E',E"). Moreover, let f €
Ly(E x B ® ') with f(X,X') € LL(Q, F,P).

Then there exists a P\g-null set N € G, such that,
Z(w) := / f(z,X'(w)) P(w,dz), we€ N°, and Z(w):=0, we N,
E
defines a conditional expectation of f(X,X') given G. In particular,

E[f (X, X")|G)(w) = /Ef(a:,X'(w)) Py g(w,dz) P-a.e. we Q.

Let now (€2, F,P) be a probability space.
Let X be a random variable on (2, F,P) taking values in a measurable space (E, £).
Let Y be a random variable on (€, F,P) taking values in a measurable space (', F").

Definition 2.7 (Factorised conditional distributions) A kernel p from (¥, F’)
to (E,E) is called factorised conditional distribution of X given Y if

p(Y'(-),-) is a conditional distribution of X given Y.
Remark 2.4 (Relation to factorised conditional probabilities) A kernelp from
(Y, F") to (E,E) is a factorised conditional distribution of X given'Y if and only if
for every B € &,
p(-, B) is a factorised conditional probabilty of X € B given Y.

Remark 2.5 (Uniqueness) Uniqueness trivially follows from the uniqueness of con-
ditional distributions.

Theorem 2.4 (Existence) If E is a complete and separable metric space and €& =
B(E), then a factorised conditional distribution of X given'Y exists.



Remark 2.6 (Notation) Ifp is a factorised conditional distribution of X givenY,
then we also write Px |y instead of p.

Corollary 2.4.1 (Case distinction formula) For every factorised conditional dis-
tribution Px |y of X given Y we have

P{X € B}| = /Q/ Py|y(w',B)Py(dw')  forall Be€.

Proposition 2.2 (Construction from densities) Let X’ be a random variable on
(Q, F,P) taking values in (E',E"). Let p and u' be o-finite measures on (E,E) and
(E',E"), respectively. Assume that P(x x) possesses a p @ p'-density fx, xy-

Define the map fx|x : E' x E — R, by

I n(x,x’ .
fxx (@) = { (Xf;)(;') ) if o' € {fx >0}

0 else.

Then the map p : E' x € — R, defined by

p(z/, B) = {(fxnx'(l"’w)ll) [B] if 2" €{fx >0}

v else

(for arbitrary v € My (E,£)) is a factorised conditional distribution of X given X'.

Theorem 2.5 Let X' be a random variable on (2, F,P) taking values in (E',E’"). Let
p be a factorised conditional distribution of X given X'. Let f € Lg(E x E',E®E’) be
such that f(X,X') € C%(Q,}",IP’).

Then there exists a Px/-null set N' € £ such that
g(a') == /Ef(x,x')p(z’,dz), ¥ € N°, and g(z'):=0, 2’ € N,
defines a factorised conditional expectation of f(X,X') given X'. In particular,
Elf(X, X)X = 2] = /Ef(x,x/)IP’XHX/(x/,dx) Px/-a.e. 2’ € E'.

Theorem 2.6 (Multilevel models) Let (2, F,P) be a probability space, and for ev-
ery j=1,...,k let X; be a random variable on (Q, F,P) with values in (E;,&;).

Assume that for every j =2,...,k there exists a factorised conditional distribution of
X, given (X1,...,X;-1). Then we have
() Pix,.ox0) = Pixyoxies) @ Pxygioxas X, and

(“) P(X1,-~7Xk) = HDXl ®]P>X2||X1 ®]P)X3H(X17X2) @ ®]PXkH(X17---,Xk71)'



3 Probability Measures on Infinite Product Spaces

Let T be a non-empty set. Let (E¢, &) be a measurable space, ¢ € T

The cartesian product of Ey, t € T, is defined by

X Ep = {(xt)ter : 1 € Ey for all t € T} .
teT

For two subsets S C U C T, we defined the map

;s Xyey Bt — Xieg Bt
(z)tev — (T¢)tes -

If S = {t}, then we also write 7y, instead of my,g¢y. If U = T, then we also write 7g
and 7, instead of 77,5 and 7y, 4y, respectively.

For any set 2, we define

Piin () := system of all finite subsets of €2,

PBeou(2) := system of all countable subsets of Q,
PBo,fin (2) := system of all non-empty and finite subsets of 2, and
Po,cou(§2) := system of all non-empty and countable subsets of Q.

Definition 3.1 (Product o-algebra) Let S,U € B, (T") with S CU. The product
o-algebra ®U;t€S Eof &, 1€ S, on X, _,, E; is defined by

teU
® &= 0( U 7TU;1t(5t)> .
U;tesS tes

Theorem 3.1 Let pi, 1" € Mi(X, o Ets Qr.per Et). Then we have p = ' if and only
if

Lo w};ls =u o T%}S for all S € Po an(T).
Definition 3.2 (Projective family) For every S € Bo an(T), let
useM1<><Et, (09) 5t>.
tesS  s:tes
Then {115} sep, n(T) 15 called projective family if it satisfies the consistency condition
ps = pu oyl for all S,U € PBo gin(T) with S CU. (C1)

Theorem 3.2 (Kolmogorov’s extension theorem) For every t € T, let E; be a
complete and separable metric space and & be the corresponding Borel o-algebra.



Then, for every projective family {is}sep, s (1) of probability measures
,LLSEM1<><E1&, ® ]:t>
tesS S;tes
there exists exactly one probability measure
pem( X5 @ &)
teT T;teT

such that
pomrs =ps  forall S € Pogn(T).

Definition 3.3 (Product measure) For everyt € T, let uy € My (E4, E).

Then, a probability measure p € Ml(XteT Et, Qe &) is called product measure
of u, t €T, if it satistfies

Lo 71-;;15 = ®Ht for all S € Po s (T).

tesS

In this case, we also write Qo ¢ instead of pu.

Theorem 3.3 (Uniqueness) For every t € T, let uy € M1(E, &;).
Then there exists at most one product measure of pus,t € T.

Theorem 3.4 (Existence) For everyt € T, let E; be a complete and separable metric
space, & be the corresponding Borel o-algebra and p, € Mq(Ey, E).
Then there exists (exactly) one product measure of s, t € T.

Corollary 3.4.1 For everyt € T, let E; be a complete and separable metric space, &
be the corresponding Borel o-algebra and py € My (Ey, &).

Then there exists a probability space (Q, F,P) and independent random variables X, t €
T, on (Q, F,P) whose distributions Px,,t € T, coincide with us on (Ey, &), t € T.

Corollary 3.4.2 Let (Q,F,P) be a probability space. For every t € T, let X; be
random variables on (0, F,P) taking viaues in (Ey,E). Then the random variables
Xi,t €T, are independent if and only if P(x,),.. = Q,cr Px, -



4 Foundations of Stochastic Processes

Let (Q, F,P) be a probability space.
Let (E, &) be a measurable space and T' # & be a set.

Definition 4.1 (Stochastic process) A map X : T x Q — E is called stochastic
process on (Q, F,P) with state space (E,E) and index set T if for every t € T the
map w— X (t,w) is (F,E)-measurable.

In this case, one also speaks of an (E,E)-valued process on (Q, F,P) with index set
T.

Remark 4.1 (Terminology) Let X = (X¢)ier be an (E, E)-valued process on (Q, F,P)
with index set T. We will use the following terminology.

For every fized (t,w) € T x Q, X;(w) is called state of X att given outcome w.
For every firted t € T, X, is called t-coordinate of X .

For every fized w € Q, (X (w))ier is called path (or trajectory) of X given outcome
w.

In particular, ET is called paths space of X.

Theorem 4.1 (Random variables and processes) For a map X : T X Q — E the
following conditions are equivalent.

(i) The map w — (X¢(w))ier is (F,E®T)-measurable.
(ii) The map w +— 15(X(w)) = (X¢(w))ies is (F,E%®%)-measurable for every S €
mO,ﬁn(T)'
(#ii) The map w — m (X (w)) = X¢(w) s (F,E)-measurable for everyt € T.

Remark 4.2 Thus, every (E,&)-valued process on (Q, F,P) with index set T is an
(BT, £9T)-valued random variable on (2, F,P), and vice versa.

Definition 4.2 (Distribution of a process) Let X = (Xi)ier be an (E,E)-valued
process on (Q, F,P) with index set T

Then, Px =Po X! is called distribution of X. Moreover, for every S € Bo in(T),
Prox) = P(x,).es 8 called finite-dimensional distribution of X with base S.

Theorem 4.2 (Characterisation by finite projections) Let X = (Xi)ier and
X' = (X])ter be two (E,E)-valued processes with index set T on probability space
(Q,F,P) and (Y, F', "), respectively.

Then, Px =Py, if and only if Pry(x) = IP’;S(X,) for all S € Po an(T).
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Theorem 4.3 (Existence) Let E be a complete and separable metric space and E be
the corresponding Borel o-algebra.

For every projective family {ps}sep, u.()} there exists a probability space (2, F,P)
and an (E,E)-valued process X = (Xi)ier on (Q, F,P) with index set T such that
IP)?Ts(X) = Us for all S € ‘Bo,ﬁn(T)-

Definition 4.3 A process X = (X¢)ier on (2, F,P) is said to possess independent
coordinates if the family {X;}ier of random variables is independent.

Corollary 4.3.1 For a process X = (Xi)ier on (, F,P) the following statements are
equivalent.

(i) X possesses independent coordinates.
(it) Px)ier = ®teT Px,.
(7i7) Px,),cs = Qyeg Px, for all S € Po an(T).
Corollary 4.3.2 Let E be a complete and separable metric space and £ be the corre-

sponding Borel o-algebra. Moreover, let uy € My (E,E),t € T.

Then there exists a probability space (2, F,P) and an (E, £)-valued process X = (X)ter
on (2, F,P) with index set T that possesses independent coordinates and that satisfies
Px, = u forallteT.

Example 4.1 For every p1 € M1(R, B(R)), we can find by Corollary 4.3.2 a probabil-
ity space (Q, F,P) and a real-valued process X = (X;) en on (Q, F,P) with independent
coordinates and Px, = py for all j € N.

Obviously, this process is mothing but a sequence of i.i.d. random variables with
IPXl = H1-

If in addition [|z|pi(dz) < oo, then each of the random variables X;, j € N, is
contained in LL(Q,F,P). If E[X1] = 0, then the real-valued process S = (Sy)nen,
defined by

So:=0 and Sn::ZXj,nEN
j=1

is called symmetric random walk with innovation distribution .

For a random variable with a “simple” co-domain as, e.g., R, the distribution Px
provides “full” information on the behavior of X.

The situation is different when the co-domain of X is more complicated. Some qualita-

tive properties of paths may differ significatly for two processes, even with the same
distribution.
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Example 4.2 Let (Q, F,P) £ ([0,1], Bio,11(R), £jj0,1)) and T := [0,1]. Let two real-
valued processes X = (Xi¢)rer and X' = (X])ter on (Q, F,P) be defined by Xi(w) :=0
and Xj(w) = Ty (t).

Then, Px = Px, but each path of X is continuous, whereas each path of X' has a
discontinuity.

Theorem 4.4 (Inadequacy of the product o-algebra) Let (E,E) be a measur-
able space and T be a non-empty set. Then, for every A € £9T there exists an
S € PBocou(T) such that for all f,g € ET,

f=gonS, feA = gecA.

Remark 4.3 For each countable set S C [0,1] and each f € C([0,1]) there are of
course plenty of functions g € RIU\ C([0,1]) with f = g on S. Thus, by contraposition
of Theorem J.4, the set C([0,1]) can indeed not be contained in B(R)®1:1,

The same is true, e.q., for the set of all monotone functions from R,

Definition 4.4 (Modifications, indistiguishability) Let X = (X;)ier and Y =
(Yo)ter be two (E, E)-valued processes on a probability space (2, F,P) with index set T.

The processes X and Y are called modifications of each other if
Xi(w) =Y (w) forP-a.a. weQ, forallteT.
The processes X and Y are called indistiguishable if
Xi(w) =Y (w) forallt €T, for P-a.a. w € Q.

Theorem 4.5 Let X = (Xi)ier and Y = (Yy)ier be two (E, E)-valued processes on a
probability space (2, F,P) with index set T. Then

(i) X,Y indistiguishable — X,Y modifications of each other.
(i) X,Y modifications of each other — Px = Py-.
(iii) X,Y modifications of each other —> X,Y indistinguishable, if one of the
following two conditions is met

(a) T is countable.

(b) T is an interval in R, E is a separable metric space, & is the corresponding
Borel o-algebra, and P-a.a. paths of X and Y are left-continuous of P-
a.a. paths of X andY are right-continuous.

Theorem 4.6 (Kolmogorov-Chentsov) Let (E,d) be a complete and separable met-
ric space and € be the corresponding Borel o-algebra. Moreover, let T be a finite union
of bounded intervals in R™ and X = (X})ier be an (E, E)-valued process on a probabil-
ity space (Q, F,P) with index set T.
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If we can find constants q,9,C € Rsq such that
Eld(X,, X)) < C|ls—t|™  foralls,t €T,
then there exists a modification of X whose paths are all continuous.

The modification can even be chosen such that for every v € (0,8/q) the paths of the
modification are all Hélder-y-continuous.

Definition 4.5 (Product measurable) Assume that T is equipped with a o-algebra
T, and let X be an (E,E)-valued process (2, F,P) with index set T.

The process X is called product measurable if the map X : TxQ — E is (TQF,E)-
measurable.

Proposition 4.1 Let T be an interval in R and X = (X;)ier be a real-valued process
(Q, F,P) with index set T.

If the paths of X are all left-continuous or all right-continuous, and T is equipped with
the Borel o-algebra B(T) = B(T)NT, then X is product measurable.

Definition 4.6 (Strictly stationary) Let (E,E) be a measurable space and T €
PBo(R) be closed under addtion. Then, an (E,E)-valued process X = (Xi)ier s called
strictly stationary if

PxiysornXire) = P(xiy o0 X0,)
forallk e N and s,t1,...,t, €T.

Definition 4.7 (Independent increments) Let T € Bo(R). Then, an (R™, B(R™))-
valued process X = (Xy)ier is said to possess independent increments if for every
k>2andty,...,tp €T withty <ty <--- <ty the random variables

X, — Xiyy oo, Xy, — Xi—1 are independent.

Definition 4.8 (Increments independent of the intitial state) Let T € P, (R)
be such that o := infT 4is contained in T. Then, an (R™,B(R™))-valued process
X = (Xy)ter is said to possess independent increments that are independent
independent of the initial state if for every k € N and tg,... ,ty € T witho <t1 <
t1 < - <ty the random variables

Xoy Xyy — Xoyo oy Xy, — X4—1 are independent.

Definition 4.9 (Stationary increments) Let T' € Bo(R) be closed under addtion.
Then, an (R™, B(R™))-valued process X = (Xi)ter on a probability space (Q, F,P) is
said to possess stationary increments if for every k € N and s,tg,...,t; € T with
ty < .-+ < t, we have

P (X0 o= Xugtor Xt o —Xep s = L(Xoy = Xegrs Xep = Xe_,) -
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Lemma 4.1 Let T € Po(R) be closed under addition and AT = {t — s : s,t €
T with s < t}. Moreover, let X = (X¢)ier be an (R™, B(R™))-valued process on a
probability space (2, F,P).

If X possesses independent increments and for every h € AT there exists a up €
M (R™, B(R™)), such that, Px,_x, = pn for all s,t € T with t —s = h, then X

possesses stationary increments.

Definition 4.10 (Process, centered) Let T be a non-empty set and p € [1,00).

An (R, B(R))-valued process (Xi)ier on a probability space (Q, F,P) is called L5 -
process if X, € LE(Q, F,P) forallt €T.

An L8 -process (Xi)ier is called centered if E[X,] =0 for allt € T.

Definition 4.11 Let X = (Xi)ier be a real-valued process on a probability space
(Q,F,P).

If X is an L}-process, the its mean function mx : T — R is defined by

If X is an L3-process, then its covariation function vx : T xT — R and its variance
function vy : T — R are defined by

vx(s,t) == Cov(Xs, X¢) and wvx(t) := Var(X:), respectively.

Lemma 4.2 Let T € Bo(R) such that o := infT € T. Then, if an L3%-process
X = (Xy)ter possesses independent increments that are independent of the initial state,
we have

vx(s,t) = vx(min{s,t}) for all s,t €T.

Definition 4.12 (Symmetric, positive semi-definite) A4 map v : T x T — R
is symmetric if y(s,t) = y(t,s) for all s,t € T, and positive semi-definite if
S S ANt t) >0 fork €N, ...t €T and Ay, ..., A\ € R.

Lemma 4.3 The covariance function yx of any L3-process X = (X )er is symmetric
and positive semi-definite.

Lemma 4.4 The mean function mx of any strictly stationary L -process X = (X;)ier
s constant.

For the covariance function yx of any strictly stationary L3-process X = (Xt )ter, , we

have
vx(s,t) = vx(0,[s — t]) Jor all s,tR>o.
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5 Poisson Processes

Definition 5.1 (Poisson process) For every A € Rsg, a (R, B(R))-valued process
N = (Nt)iers, on a probability space (Q, F,P) with index set R is called Poisson
process with intensity \ if it possesses the following properties.

(P1) Ny =0 P-a.s.
(P2) N has independent increments.
N,—N, = Poissy_s) Jor all s,t € R>qg with s <t.
P3) Pn,—n, = Poissy—s) f ll R> ith
-a.a. paths o are monotonically increasing and right-continuous.
Pj) P hs of N lly i ; d righ ;

Proposition 5.1 If N = (Ni)ier., is a Poisson process on a probability space (Q, F,P),
then P-a.a. paths of N take values only in Ny.

Remark 5.1 Two Poisson processes with the same intensity possess the same finite
dimensional distributions.

Theorem 5.1 (Existence) Let A € Ry and (W;),en be a sequence of i.i.d. real-
valued random variables on a probability space (Q, F,P) with Py, = Exp,.

Then, using the convention max @ := maxN := 0, we can define by
k
Ny =max{k e N: > W; <t}, t € Rxg
j=1
a Poisson process N = (Ni)ier., with intensity .

Proposition 5.2 Let N = (Ny)ier., be an (R>o, B(R>0))-valued process on a prob-
ability space (0, F,P) that satisfies conditions (P1), (P2), (P4), and assume that
P-a.a. of its paths take values only in Ny.

Then, N satisfies condition (P3) for a given A € R if and only if it satisfies the
following conditions (P5)-(P7).

(P5) N has stationary increments.
(P6) N is an Lk-process and E[N1] = \.

Corollary 5.1.1 Let N = (Ny)ier., be a Poisson process with intensity A € R>q on
a probability space (Q, F,P). Then, for P-a.a. w € Q, there does not exist any t € R+
such that Ni(w) — limg » Ng(w) > 2.
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6 Brownian Motion

Definition 6.1 Let T be a nonempty set. A (R, B(R))-valued process X = (X¢)ter
on a probability space (Q, F,P) with index set T is called a Gaussian process if
all of its finite-dimensional distributions are normal distributions, i.e., if for every

Se mo7ﬁn(T>7

Prox) s a #S-variate normal distribution.

Theorem 6.1 The distribution of a Gaussian process X = (Xi)ier is uniquely deter-
mined by the mean function and the covariance function of X.

Theorem 6.2 (Existence) For a non-empty set T, let m : T — R be an arbitrary
function and v : T x T — R be a symmetric and positive semi-definite function.

Then there exists a probability space (2, F,P) and a Gaussian process X = (X¢)ter on
(Q, F,P) with mx =m and vx = 7.

Definition 6.2 (Brownian motion) An (R, B(R))-valued process B = (By)ier~, on
a probability space (0, F,P) with index set R>¢ is called 1-dimensional (standard)
Brownian motion if it possesses the following properties.

(B1) By =0 P-a.s..

(B2) B has independent increments.

(B3) Pp,—p, = No,—s for all s,t € R>o with s < t.

(B4) P-a.a. paths of B are continuous.

Remark 6.1 Two Brownian motions possess the same finite-dimensional distributions.

Proposition 6.1 Let B = (Bt)tERzo be a Brownian motion on a probability space
(Q,F,P). Then

(i) Pp, = No for all t € R
(ii) B is a L -process for every p € [1,00).
(iii) mp(t) :==E[B;] =0 and vp(t) := Var[By] =t for all t € R>o.
(tv) vB(s,t) := Cov(Bs, B;) = min{s,t} for all s,t € R>g.
All of these four statements are valid even without assumption (B4).

Proposition 6.2 Let B = (B)ier., be an (R, B(R))-valued process on a probability
space (Q, F,P) that satisfies condition (B1). Then the process B satisfies (B2) & (B3)
if and only if it satisfies the following condition (B5).

]P)(Btlv--wBtk) = N()’th’___’tk f07' all k € N and t1,... ,tk S RZO with < - <,
(B5)
where 0:= (0,...,0) and Vi, 4, = (min{t;, t;})1<ij<k-
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Remark 6.2 In the framework of Proposition 6.2, condition (B5) can be written as
B is a centered Gaussian process with covariance funciton yp(s,t) = min{s,t}.

In particular, every Brownian motion possesses property (B6).

Theorem 6.3 (Existence) There exists a probability space (2, F,P) and a Brownian

motion B = (Bi)ter., on (2, F,P).

B can be chosen such that P-a.a. of its paths are locally Holder-vy-continuous for every

7 €(0,1/2).

Proposition 6.3 (Transformations) Let B = (B;)ier., be a Brownian motion on
a probability space (S, F,IP). Moreover, let c € R\ {0} and s € Rso. Then also the
process B = (By)ier~, i a Brownian motion if it is defined by

(i) By = L1Buay,t € Rxy.

(ZZ) Bt = —Bt,t € RZO

(iii) By := Biys — B, t € Rsg.

(iv) By :==tBy;,t € Rug, and By := B.
Theorem 6.4 (Paley-Wiener-Zygmund) Let B = (B;)icr., be a Brownian mo-
tion on a probability space (2, F,P) and v € (1/2,00).
Then, P-a.a. paths of B are not Hélder-y-continuous at any point.
In particular, P-a.a. paths of B are not differentiable at any point.

Definition 6.3 (d-dimensional Brownian motion) An (R¢, B(R?))-valued process
B = (Bt)ters, on a probability space (2, F,P) with index set R>q is called d-dimensional
(standard) Brownian motion if it possesses the following properties.

(B1) By =0 P-a.s..

(B2) B has independent increments.

(B3) Pp, B, = No,(t—s)1, for all 5,1 € R> with s < t.
(B4) P-a.a. paths of B are continuous.

Theorem 6.5 If B = (B, ..., B¥) is a d-dimensional Brownian motion on a proba-
bility space (2, F,P), then its coordinates BW ... B gre independent 1-dimensional
Brownian motions.

If, conversely, BV, ... BD are independent 1-dimensional Brownian motions on a
probability space (0, F,P), then B := (BW, .. .,B(d)) is a d-dimensional Brownian
motion.

Corollary 6.5.1 (Existence) There exists a probability space (Q,F,P) and a d-
dimensional Brownian motion B = (By)iers, on (2, F,P).
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7 Markov Processes

Let (E, &) be a measurable space.
Let T € PBo(R).
Let (2, F,P) be a probability space.

Definition 7.1 (Filtration) For everyt € T, let F; be a sub-o-algebra of F. Then
the family (Fi)ier is called a filtration in F if

Fs C Fy for all s,t € T with s < t.

For two filtrations F = (Fi)ter and F' = (F])ter in F, we henceforth write F C T if
Fit CF, forallteT.

Definition 7.2 (Adaptedness) Let F = (Fi)ier be a filtration in F and X =
(Xt)ter be an (E,E)-valued process (1, F,P).

The process X is said to be adapted to the filtration F (short: F-adapted) if X, is
(Fi, E)-measurable for everyt € T.

Definition 7.3 (Natural filtration) Let X = (X;)ier be a (E,E)-valued process on
(Q, F,P), and set

F&=o0(Xy,t€8) forall S €P(T),
FX=FL = Flogor foralteT,
.7:; = f[)t(,oo)mT forallteT.

The filtration FX := (F3X )ier is called natural filtration of X.

Definition 7.4 (Markov process) Let X = (Xy)ier be an (E, E)-valued process on
(Q,F,P) and F = (Fi)ter be a filtration in F.

The process X is called Markov process w.r.t. F (short: F-Markov process) if it
is F-adapted and satistfies

P{X: € A} F,] =P[{X; € A} X,] P-a.s. forall s,t € T with s <t and A€ €.

If F coincides with the natural filtration FX of X, then X is simply referred to as
Markov process.

Proposition 7.1 (Equivalent properties) For a (E,E)-valued process X = (X¢)er
on (2, F,P), the following five conditions are equivalent.

(i) For allk € N, t1,... tx,t € T witht; < --- <ty <tand A€&

P[{X, € A}|(Xy,,...,Xs,)] = P[{X; € A} Xy,] P-acs..
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(ii) X possesses the Markov property for F := FX.
(iii) For all s € T and B € F2,

P[B|FX] =P[B|X,] P-as..

(iv) For all s € T, Ty := [s,00) N T, and bounded f € Lx(ETs,£97T+)

E[f (e, (X)|F] = Elf (72, (X))|Xs]  P-acs..

(v) For alls €T, Ae FX and B € FX,

S

P[AN B|X,] = P[A|X,]P[B|X,] P-a.s..

Definition 7.5 (Transition probability) Let X = (Xi)ier be an (E,E&)-valued
Markov process on (0, F,P).

If, for s,t € T with s < t, there exists a factorised conditional distribution of Xy given
X, then it is referred to as transition probability of the Markov process X from s
to t.

Proposition 7.2 Let X = (X¢)ter be an (E, E)-valued Markov process on (Q, F,P).
Assume that for all s,t € T with s <t there exists a factorised conditional distribution
Px,x, of Xi given Xs. Then

(i) Px,|x,(v,") = 6;[:] forallt € T and x € E.
(ii) Px,x, = Px,|1x.Px,|x. for all s,u,t € T with s <u < t.

Definition 7.6 A family P = (ps.¢)s.tems<t of kernels from (E,E) to (E,E) is called
a Markov transition function on (E,E) if

(1) pri(x,-) = 6] for allt € T and x € E,
(i7) st = PsubPut for s,u,t €T with s <u <.

In the framework of Definition 7.5, BX = (Px,|1x.)s teT:s<t s called Markov tran-
sition function of the Markov process X.

Lemma 7.1 (Markov property as transition probability) Let X = (Xi)ier be
an (E,&)-valued Markov process on (0, F,P) and t1,... ,tg,t €T witht; < -+ <tg <
t.

Then, if there exists a factorised conditional distribution PXtHth of Xy given Xy, ,

is a factorised conditional distribution of X, given (Xi,,...,Xy,)-
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Proposition 7.3 (Finite-dimensional distributions) Let X = (X})ier be an (E,E)-
valued Markov process on (Q, F,P) and to, ..., tx, € T withtg < -+ < ty.

Assume that there exists a factorised conditional distribution Px, | x,. ) of Xy, given
J J—
Xy, foreveryj=2,... .k

(Z) P(th g Xty ) T PXH & PXtQHth Q- ® ]P)th (1 Xt
and for every j=1,... )k

(”) P(th """ thc) = (PXtO PXH tho) ® PXQHXH ®-® ]Pth Hth—l ’ and
(id) Px,, .. X)X = Px, 11X, @ ©Px, x,,_ -

Theorem 7.1 (Existence) Asumme that E is a complete and separable metric space
and & is the corresponding Borel-o algebra. Moreover, assume that o :==infT € T.

Then, for every 1, € M1 (E, &) and every Markov transition function P = (pst)s teT:s<t
on (E,E), there exists a probability space (Q, F,P) and an (E, E)-valued Markov process
X = (Xt)ter on (Q,F,P) with initial distribution Px, = p, and Markov transition
function .

Theorem 7.2 Assume that o = infT € T. Let X = (Xi)ier be a (R™,B(R™))-
valued process on (Q, F,P).

If X possesses independent increments that are independent of the initial state, then X
is a Markov process.

Example 7.1 Let B = (B)ier., be a Brownian motion on (Q, F,P), and let P =
(Ps.t)s tersq:s<t be a family of kernels from (R, B(R)) to (R, B(R)) that are given by

pse(x, A) == Ny s[A], (x,A) € R x B(R).
Then, B is a Markov process with Markov transition function B.
Example 7.2 Let N = (Ni)ier., be a Poisson process with intensity A € Rxo on
(0, F,P), and let P = (ps.t)s,ters:s<t be a family of kernels from (R, B(R)) to (R, B(R))
that are given by
ps,t(z7 A) = POiSS/\(t—s) [A - SC] ) (Iv A) €Rx B(R) :

Then, N is a Markov process with Markov transition function 3.
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8 Martingales, Sub- and Supermartingales

Let T € PBo(R).
Let (22, F,P) be a probability space.

Definition 8.1 (Martingale) Let F = (F)ier be a filtration in F and X = (X¢)ier
be an Lk-process on (Q, F,P). If the process X is F-adapted then it is called

(i) F-martingale if E[X;|F;s] = X5 P-a.s. Vs,t € T with s < t.
(ii) F-submartingale if E[X;|Fs] > X, P-a.s. Vs,t € T with s < t.
(iii) F-supermartingale if E[X;|F;] < X, P-a.s. Vs, t € T with s < t.
If X is in addition an LY -process for some p € (1,00). then one speaks of an Ly -F-

(sub-, super-) martingale.

If F is the natural filtration FX of X, then one simply speaks of a (sub-, super-)
martingale.

Proposition 8.1 (Transformations) Let F = (F;)ier be a filtration in F, and X =
(Xo)ter and (Yi)ier be two (R, B(R))-valued processes on (2, F,P). Then

(i) X is a F-supermartingale if and only if —X := (—Xy)ier s a F-submartingale.

(i) If X and Y are F-martingales and a,b € R, then aX + bY := (aX; + bYy)ier i
a F-martingale.

(ii) If X and Y are F-supermartingales and a,b € R>q, then aX +bY = (aX; +
bY)ier is a F-supermartingale.

(iv) If X andY are F-submartingales and a,b € R>q, then aX +bY := (aX;+bY})ier
is a F-submartingale.

(v) If X and Y are F-supermartingales, then X AY := (min{Xy,Y:})ier is a F-
supermartingale.

(vi) If X and Y are F-submartingales, then X AY = (max{X:,Y:})ter is a F-
submartingale.

(vii) If X is an F-martingale and f : R — R is a convex function such that the process
Y := (Yi)er defined by Yy := f(Xi),t € T, is an Li-process, then Y is an
F-submartingale.

Lemma 8.1 Let £ € L&(Q, F,Q) and F = (Fi)ier be a filtration in F.
Then, the process X = (Xi)ier defined by X, := E[¢|F],t € T is a F-martingale.

Proposition 8.2 LetF = (F;)icr be a filtration in F and X = (X¢)ter be a F-adapted
L4 -process on (2, F,P). Then
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(i) If P-a.a. paths of X are monotonically increasing, then X is a F-submartingale.

(ii) If P-a.a. paths of X are monotonically decreasing, then X is a F-supermartingale.
Example 8.1 FEvery Poisson process is a submartingale.

Proposition 8.3 Assume that o :=infT € T, and let X = (X;)ier be a Li-process
on (Q, F,P).

Then if X possesses a constant mean function as well as independent increments that
are independent of the initial state, X is a martingale.

Example 8.2 Fvery 1-dimensional Brownian motion is a martingale.

Example 8.3 (Symmetric random walk) Let S = (S,)nen, be the symmetric ran-
dom walk defined by

. SO = 0,
e S, = Z;L:lXj,’REN,

where (X;)jen s a sequence of independent random variables in L}(Q, F,P) such that
E[X;] =0 for all j € N. Moreover, let the filtration FX = (F:X),en, be given by

o F:i=1{2,0},
o FX :=0(Xy,...,X,),n €N,
Then, S is a FX -martingale.

Definition 8.2 (Predictable process) Let F = (F,)nen, be a filtration in F and
H = (Hp)nen be a process on (Q, F,P) taking values in a measurable space (E,E).
Then, H is called F-predictable if H,, is (Fn—_1,E)-measurable for every n € N.

Definition 8.3 (Martingale transformation) Let F = (F,)nen, be a filtration in
F, and X = (Xy)nen, ond H = (Hp)nen are two (R, B(R))-valued processes on
(Q,F,P).

Then, the process H @ X = (H o X, )nen, defined by
HeXy:=0 and HeX,:=Y H;X;-X;1), neN
j=1
is called martingale transformation of X w.r.t. H.

Remark 8.1 The process H = (H,,)nen will be called locally bounded if for every
n € N there exists some ¢, € Ry such that |H,| < ¢, P-a.s..
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Proposition 8.4 (Properties) Let F = (Fp)nen, be a filtration in F, and X =
(Xn)nen, and H = (Hp)nen be two (R, B(R))-valued processes on (Q, F,P). Moreover,
let H @ X be the martingale transformation of X w.r.t. H.

(i) If H is F-predictable, R>g-valued and locally bounded, then H e X is a F-
submartingale if X is a F-submartingale.

(i) If H is F-predictable, R>o-valued and locally bounded, then H e X is a F-
supermartingale if X is a F-supermartingale.

(iii) If H is F-predictable, R>q-valued L%-process, then H o X is a F-submartingale if
X is a L3-F-submartingale.

(iv) If H is F-predictable, R>q-valued L3-process, then H o X is a F-supermartingale
if X is a L3-F-supermartingale.

(v) If H is F-predictable and locally bounded, then H o X is a F-martingale if X is a
F-martingale.

(vi) If H is a F-predictable L%-process, then H e X is a F-martingale if X is a
L3 -F-martingale.

Theorem 8.1 (Doob decomposition) Let F = (Fy,)nen, be a filtration in F, and
X = (X,)nen, be a F-adapted L}-process on (Q, F,P). Then

(i) On (Q, F,P), there exist a F-martingale M = (My,)nen, with My =0 P-a.s. and
a F-predictable L} -process A = (A,)nen such that X,, = Xo+ M, + A P-a.s. for
all n € Ny, where Ag := 0.

(i) The decomposition in (i) is P-a.s. unique and has the form

An = ZE[XJ - Xj—1|]:j—1} = ZE[Xj‘fj—l] - Xj—l P-a.s.
Jj=1 j=1
M, =X, — A, — Xo = ij —E[X;|F;,] P-as.

j=1
(i) X is a F-submartingale if and only if P-a.a. paths of A are monotonically in-
creasing.

(iv) X is a F-supermartingale if and only if P-a.a. paths of A are monotonically
decreasing.

Definition 8.4 (Compensator) In the framework of Theorem 8.1, the P-a.s. unique
F-predictable process A is called compensator of X (w.r.t. F).
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Corollary 8.1.1 Let F = (F,)nen, be a filtration in F and X = (X, )nen, be a LE-F-
martingale on (Q, F,P).

Then, there exist a centered F-martingale M = (M,)nen, with My = 0 P-a.s. and a
F-predictable L}-process A = (Ap)nen such that

X2=X2+ M, + A, P-as. foralln € Ny,

where Ag := 0.
This decomposition of the process X2 := (X2),en is P-a.s. unique and P-a.a. paths of
A are monotonically increasing.

Definition 8.5 (Quadratic variation process) In the framework of Corollary 8.1.1,

the P-a.s. unique monotonically increasing and F-predictable process A is called quadratic
variation process of X. We also write (X) and (X),, instead of A and A,,, respec-

tively.

Proposition 8.5 Let F = (F,)nen, be a filtration in F and X = (X,,)nen, be a L3-F-
martingale on (Q, F,P). Then, the following assertions hold true for the quadratic
variation process (X) = ((X)n)nen, of X.

(i) E[(X)n] = E[X2] — E[X2] = E[(X,, — X0)?] = Var[X,, — Xo] for all n € No.
(i) (X)y —(X)n—1 = E[(X), — Xpn_1)?|Fpn_1] P-a.s. for alln € N.
(’LZZ) <X>n = Z?:l E[(X7 — Xj—l)2|]:j—1] P-a.s. fO’f’ all n € N.

Example 8.4 (Symmetric random walk) Let S = (Sy,)nen, be the symmetric ran-
dom walk defined by Sy := 0 and S, := 2?21 X;,n € N, where (X;)jen is a sequence
of independent random variables from Lf (2, F,P) with E[X;] = 0,5 € N.

According to Erample 8.3, S is a (L%-) FX -martingale.

For the quadratic variation process (S) of S, we have

(S)n = ZE[XJQ] P-a.s. for alln € N.

j=1

If the innovations X;,j € N, are identically distributed (or if, at least, all of them
possess the same 2-nd moment), then specifically

(S), = nE[X?] = nVar[X;] P-a.s. for alln € N.

Definition 8.6 (Stopping time) Let F = (F;)icr be a filtration in F.
A map 7 : Q — TU{+o0} is called stopping time w.r.t. F (short: F-stopping
time) if {r <t} e F forallteT.
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Proposition 8.6 Let F = (F;)ier be a filtration in F and 7 and o be two F-stopping
times. Then also the maps T Ao, 7V o :Q — T U{oc} defined by

TAo(w) :=min{r(w),o(w)}, we
7Vo(w) :=max{r(w),c(w)}, we

are F-stopping times. If T is contained in R>q and closed under addition, then also
the map 7+ 0 : Q@ — T U {oco} defined by

(t+o)(w) =7w)+o(w), wef
is a F-stopping time.

Lemma 8.2 Let F = (Fi)ier be a filtration in F and 7 be an F-stopping time. Then,
the following system of sets is a sub-c-algebra of F

Fr={AeF: An{r <t} € F forallt €T}.

Definition 8.7 (o-algebra of the 7-history) Let F = (Fi)ier be a filtration in F
and T be an F-stopping time.
Then, F. defined by Lemma 8.2 is called o-algebra of the T-history.

Example 8.5 (Hitting time) Let F = (F,)nen, be a filtration in F, and X =
(Xn)nen, be an F-adapted process taking values in a measurable space (E,E).
Then, for every A € &,
TA(w) ;== min{n € Ny : X,,(w) € A}, weQ
defines an F-stopping time T4, where we set min & := co.

Remark 8.2 (Notation) For any process X = (X, )nen, and any stopping time T
w.r.t. a filtration F = (Fp,)nen,, we will henceforth use the notation

XT(w) = X.,.(w) (w) , weE {T € No},
and as before F, denotes the o-algebra of the T-history.

Theorem 8.2 (Optional sampling) Let F = (F,)nen, be a filtration in F, let X =
(Xn)nen, be an F-adapted Lk-process on (Q, F,P), and let o and T be two F-stopping
time with o < 7. If X is an F-martingale (-submartingale, -supermartingale) and T is
P-a.s. bounded, then

EX,|F]=(>,<)X, P-as.

and in particular E[X,] = (>, <)E[X,].

Corollary 8.2.1 (Martingale test) Let F = (F,)nen, be a filtration F and X =
(Xn)nen, be an F-adapted L -process on (Q, F,P).

Then, X is an F-martingale if and only if E[X,;] = E[Xy] for every P-a.s. bounded
F-stopping time T.
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Definition 8.8 For any filtration F = (Fp,)nen, ™ F and any n € Ny, we set
]:77; = ]:‘r/\n .

Definition 8.9 (Stopped process) Let F = (Fp,)nen, be a filtration in F. For any
F-stopping time T and any F-adapted process X = (X )nen, on (2, F,P) taking values
in a measurable space (E,E), the process X™ = (X7 )nen, defined by

X'r:(w) = XT/\TI(W) = Xmin{n,T(w)}(W)
s said to be the corresponding stopped process.

Theorem 8.3 (Optional stopping) Let F = (Fy,)nen, be a filtration in F and T
be a F-stopping time. Moreover, let X = (X,)nen, be a F-adapted (R, B(R))-valued
process on (Q, F,P).

If X is a martingale (submartingale, supermartingale) w.r.t. F, then the stopped process
X" = (X])nen, i a martingale (submartingale, supermartingale) w.r.t. both F and FT.

Example 8.6 Let (X;)jen be a sequence of i.i.d. real-valued random variables on
(Q,F,P) with Px, = $6_1 + 361, and FX = (F)pen, be given by F = {@,Q},
FX =0(Xy,...,X,),n€N. Set Sy :=0,8, = 22:1 X;,neN. §=(S,)nen, s an
FX _martingale. For a,b € Z with a < 0 and b > 0, let

o 7o :=min{n € Ny : S, =a},
o 7, :=min{n € Ny : S,, = b},
o Tab i =Ta N\ Tp-
We know that 7o, Ty, Tap are FX -stopping times. For these stopping times, we have
(i) P{7ap = 7a}] =b/(la] +b),
(i) E[ra] = |alb,
(iii) E[r,] = oo.
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