Stochastics II

Notes of a lecture held in winter 2022/2023 by Prof. Dr. Henryk Zähle

Nils Müller

Saarbrücken, March 1, 2023

Contents

1	Conditional Expectations	1
2	Conditional Distributions	4
3	Probability Measures on Infinite Product Spaces	8
4	Foundations of Stochastic Processes	10
5	Poisson Processes	15
6	Brownian Motion	16
7	Markov Processes	18
8	Martingales, Sub- and Supermartingales	21

1 Conditional Expectations

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

Definition 1.1 (Conditional expectation) Let $X \in \mathcal{L}^{1}_{\mathbb{R}}(\Omega, \mathcal{F}, \mathbb{P})$ and \mathcal{G} be a sub- σ -algebra of \mathcal{F} .

A random variable $Z \in \mathcal{L}^{1}_{\mathbb{R}}(\Omega, \mathcal{G}, \mathbb{P}_{|\mathcal{G}})$ is called **conditional expectation of** X **given** \mathcal{G} if $\mathbb{E}[Z \mathbb{1}_{G}] = \mathbb{E}[X \mathbb{1}_{G}]$ for all $G \in \mathcal{G}$.

Theorem 1.1 (Existence and uniqueness) Let $X \in \mathcal{L}^{1}_{\mathbb{R}}(\Omega, \mathcal{F}, \mathbb{P})$ and \mathcal{G} be sub- σ -algebra of \mathcal{F} . Then

- (i) there exists a conditional expectation of X given \mathcal{G} , and
- (ii) if Z_1, Z_2 are conditional expectations of X given \mathcal{G} , then $Z_1 = Z_2 \mathbb{P}$ -a.s..

Remark 1.1 (Notation) Let $X \in \mathcal{L}^{1}_{\mathbb{R}}(\Omega, \mathcal{F}, \mathbb{P})$ and \mathcal{G} be a sub- σ -algebra of \mathcal{F} . If Z is a conditional expectation of X given \mathcal{G} , then we also write $\mathbb{E}[X|\mathcal{G}]$ instead of Z.

Remark 1.2 (Relation to conditional expected value) Let \mathcal{G} be a sub- σ -algebra of \mathcal{F} . For each $G \in \mathcal{G}$ the conditional expected value of $X \in \mathcal{L}^1_{\mathbb{R}}(\Omega, \mathcal{F}, \mathbb{P})$ given the event G can be determined by just knowing the conditional expectation $\mathbb{E}[X|\mathcal{G}]$.

More precisely, for each $G \in \mathcal{G}$ with $\mathbb{P}[G] > 0$, we have

$$\mathbb{E}[X|G] = \frac{\mathbb{E}[\mathbb{E}[X|\mathcal{G}]\mathbb{1}_G]}{\mathbb{P}[G]},$$

as $\mathbb{E}[X|G] = \mathbb{E}[X\mathbb{1}_G]/\mathbb{P}[G] = \mathbb{E}[\mathbb{E}[X|\mathcal{G}]\mathbb{1}_G]/\mathbb{P}[G].$

Example 1.1 Let $\{G_i\}_{i\in I}$ be a partition of Ω consisting of countably many sets from \mathcal{F} . Then, for every $X \in \mathcal{L}^1_{\mathbb{R}}(\Omega, \mathcal{F}, \mathbb{P})$ a conditional expectation of X give $\sigma(\{G_i\}_{i\in I})$ is given by $\sum_{i\in I} \mathbb{E}[X|G_i]\mathbb{1}_{G_i}$. In particular,

$$\mathbb{E}[X|\sigma(\{G_i\}_{i\in I})] = \sum_{i\in I} \mathbb{E}[X|G_i]\mathbb{1}_{G_i} \qquad \mathbb{P}\text{-}a.s..$$

Proposition 1.1 Let $X, X_1, X_2 \in \mathcal{L}^1_{\mathbb{R}}(\Omega, \mathcal{F}, \mathbb{P})$, $\alpha, \alpha_1, \alpha_2 \in \mathbb{R}$, and $\mathcal{G}, \mathcal{G}_1, \mathcal{G}_2$ be sub- σ -algebras of \mathcal{F} . Then the following assertions hold true, where in (ii) we tacitly assume (w.l.o.g.) that the pointwise additions are well defined.

- (i) $\mathbb{E}[X|\mathcal{G}] = \alpha \mathbb{P}\text{-}a.s.$ if $X = \alpha \mathbb{P}\text{-}a.s.$
- (*ii*) $\mathbb{E}[\alpha_1 X_1 + \alpha_2 X_2 | \mathcal{G}] = \alpha_1 \mathbb{E}[X_1 | \mathcal{G}] + \alpha_2 \mathbb{E}[X_2 | \mathcal{G}] \mathbb{P}$ -a.s.
- (*iii*) $\mathbb{E}[X|\mathcal{G}]^{\pm} \leq \mathbb{E}[X^{\pm}|\mathcal{G}] \mathbb{P}$ -a.s.
- (iv) $\mathbb{E}[X|\mathcal{G}] = X \mathbb{P}$ -a.s. if $X \in \mathcal{L}^{1}_{\mathbb{R}}(\Omega, \mathcal{G}, \mathbb{P}_{|\mathcal{G}})$

- $(v) \|\mathbb{E}[X|\mathcal{G}]\|_{1} \leq \|X\|_{1} \ (i.e., \mathbb{E}[|\mathbb{E}[X|\mathcal{G}]|] \leq \mathbb{E}[|X|])$
- (vi) $\mathbb{E}[\mathbb{E}[X|\mathcal{G}_1]|\mathcal{G}_2] = \mathbb{E}[\mathbb{E}[X|\mathcal{G}_2]|\mathcal{G}_1] = \mathbb{E}[X|\mathcal{G}_1] \mathbb{P}$ -a.s. if $\mathcal{G}_1 \subseteq \mathcal{G}_2$
- (vii) $\mathbb{E}[\mathbb{E}[X|\mathcal{G}]] = \mathbb{E}[X]$
- (viii) $\mathbb{E}[X_1|\mathcal{G}] \leq \mathbb{E}[X_2|\mathcal{G}] \mathbb{P}$ -a.s. if $X_1 \leq X_2 \mathbb{P}$ -a.s.
- (ix) $|E[X|\mathcal{G}]| \leq \mathbb{E}[|X||\mathcal{G}] \mathbb{P}$ -a.s.
- (x) $\mathbb{E}[X'X|\mathcal{G}] = X'\mathbb{E}[X|\mathcal{G}]$ for $X' \in \mathcal{L}_{\mathbb{R}}(\Omega, \mathcal{G})$ with $X'X \in \mathcal{L}^{1}_{\mathbb{R}}(\Omega, \mathcal{F}, \mathbb{P})$
- (xi) $\mathbb{E}[X|\mathcal{G}] = \mathbb{E}[X] \mathbb{P}$ -a.s. if $\sigma(X)$ and \mathcal{G} are independent
- (xii) $\mathbb{E}[X|\mathcal{G}] = \mathbb{E}[X] \mathbb{P}$ -a.s. if $\mathbb{P}[G] \in \{0,1\}$ for all $G \in \mathcal{G}$

Definition 1.2 (Conditional probability) Let $A \in \mathcal{F}$ and \mathcal{G} be a sub- σ -algebra of \mathcal{F} . Every conditional expectation of $\mathbb{1}_A$ given \mathcal{G} is called **conditional probability** of A given \mathcal{G} .

Remark 1.3 (Notation) Let $A \in \mathcal{F}$ and \mathcal{G} be sub- σ -algebra of \mathcal{F} . If Z is a conditional expectation of A given \mathcal{G} , then we also write $\mathbb{P}[A|\mathcal{G}]$ instead of Z or $\mathbb{E}[\mathbb{1}_A|\mathcal{G}]$.

Remark 1.4 (Conditioning on random variables) Let $X \in \mathcal{L}^{1}_{\mathbb{R}}(\Omega, \mathcal{F}, \mathbb{P})$ and $A \in \mathcal{F}$. Moreover, let Y be a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$.

- (i) If Z is a conditional expectation of X given Y, then we also write $\mathbb{E}[X|Y]$ instead of Z or $\mathbb{E}[X|\sigma(Y)]$.
- (ii) If Z is a conditional probability of A given Y, then we also write $\mathbb{P}[A|Y]$ instead of Z or $\mathbb{E}[\mathbb{1}_A|Y]$.

Let Y be a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$ with values in a measurable space (Ω', \mathcal{F}') .

Definition 1.3 (Factorised conditioning) Let $X \in \mathcal{L}^{1}_{\overline{\mathbb{D}}}(\Omega, \mathcal{F}, \mathbb{P})$ and $A \in \mathcal{F}$.

- (i) A function $g \in \mathcal{L}_{\overline{\mathbb{R}}}(\Omega', \mathcal{F}')$ is called **factorised conditional expectation of** X given Y if $g(Y) = \mathbb{E}[X|Y] \mathbb{P}$ -a.s..
- (ii) A function $g \in \mathcal{L}_{\overline{\mathbb{R}}}(\Omega', \mathcal{F}')$ is called factorised conditional probability of A given Y if $g(Y) = \mathbb{P}[A|Y] \mathbb{P}$ -a.s..

Theorem 1.2 (Existence and uniqueness) Let $X \in \mathcal{L}^{1}_{\overline{w}}(\Omega, \mathcal{F}, \mathbb{P})$ and $A \in \mathcal{F}$.

- (i) There exists a \mathbb{P}_Y -a.s. unique factorised conditional expectation of X given Y.
- (ii) There exists a \mathbb{P}_Y -a.s. unique factorised conditional probability of A given Y.

Remark 1.5 (Notation) Let $X \in \mathcal{L}^{1}_{\mathbb{R}}(\Omega, \mathcal{F}, \mathbb{P})$ and $A \in \mathcal{F}$.

- (i) If g is a factorised conditional expectation of X given Y, then we also write $\mathbb{E}[X||Y = \cdot]$ instead of $g(\cdot)$.
- (ii) If g is a factorised conditional probability of A given Y, then we also write $\mathbb{P}[A||Y = \cdot]$ instead of $g(\cdot)$

Theorem 1.3 (Insertion rule) Let X be a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$ with values in a measurable space (E, \mathcal{E}) . Let $f \in \mathcal{L}_{\overline{\mathbb{R}}}(E \times \Omega', \mathcal{E} \times \mathcal{F}')$ and assume that $f(X, Y) \in \mathcal{L}^{1}_{\overline{\mathbb{R}}}(\Omega, \mathcal{F}, \mathbb{P})$.

If X and Y are independent, then there exists a \mathbb{P}_Y -null set $N' \in \mathcal{F}'$ such that $g(\omega') := \mathbb{E}[f(X, \omega')], \omega' \in \Omega' \setminus N'$, and $g(\omega') := 0, \omega' \in N'$, defines a function $g \in \mathcal{L}^1_{\mathbb{R}}(\Omega', \mathcal{F}', \mathbb{P}_Y)$ that is a factorised conditional expectation of f(X, Y) given Y.

In this case, we have in particular that

$$\mathbb{E}[f(X,Y)||Y = \omega'] = \mathbb{E}[f(X,\omega')] \qquad \mathbb{P}_Y \text{-}a.a. \ \omega' \in \Omega'.$$

2 Conditional Distributions

Definition 2.1 (Probability kernel) Let $(\Omega_1, \mathcal{F}_1)$ and $(\Omega_2, \mathcal{F}_2)$ be mb. spaces. A map $\mathfrak{p} : \Omega_1 \times \mathcal{F}_2 \to \overline{\mathbb{R}}$ is called (probability) kernel from $(\Omega_1, \mathcal{F}_1)$ to $(\Omega_2, \mathcal{F}_2)$ if it satisfies

- (K1) $\mathfrak{p}(\cdot, A_2) \in \mathcal{L}_{\overline{\mathbb{R}}}(\Omega_1, \mathcal{F}_1)$ for all $A_2 \in \mathcal{F}_2$, and
- (K2) $\mathfrak{p}(\omega_1, \cdot) \in \mathcal{M}_1(\Omega_2, \mathcal{F}_2)$ for all $\omega_1 \in \Omega_1$.

Proposition 2.1 (Product of kernels) Let $(\Omega_j, \mathcal{F}_j)$, j = 1, 2, 3, be mb. spaces. Let $\mathfrak{p}_{2|1}$ be a kernel from $(\Omega_1, \mathcal{F}_1)$ to $(\Omega_2, \mathcal{F}_2)$, and $\mathfrak{p}_{3|1,2}$ be a kernel from $(\Omega_1 \times \Omega_2, \mathcal{F}_1 \otimes \mathcal{F}_2)$ to $(\Omega_3, \mathcal{F}_3)$. Then the right-hand side of

$$\begin{aligned} \mathfrak{p}_{2|1} \otimes \mathfrak{p}_{3|1,2}(\omega_{1}, A_{2,3}) \\ &:= \int_{\Omega_{2}} \int_{\Omega_{3}} \mathbb{1}_{A_{2,3}} ((\omega_{2}, \omega_{3})) \, \mathfrak{p}_{3|1,2} ((\omega_{1}, \omega_{2}), \mathrm{d}\omega_{3}) \, \mathfrak{p}_{2|1}(\omega_{1}, \mathrm{d}\omega_{2}) \\ &= \int_{\Omega_{2}} \mathfrak{p}_{3|1,2} ((\omega_{1}, \omega_{2}), (A_{2,3})_{\omega_{2}}) \, \mathfrak{p}_{2|1}(\omega_{1}, \mathrm{d}\omega_{2}) \end{aligned}$$

is well defined for all $\omega_1 \in \Omega_1$, $A_{2,3} \in \mathcal{F}_2 \otimes \mathcal{F}_3$, and the resulting map

$$\mathfrak{p}_{2|1} \otimes \mathfrak{p}_{3|1,2} : \Omega_1 \times (\mathcal{F}_2 \otimes \mathcal{F}_3) \to \overline{\mathbb{R}}_+$$

is a kernel from $(\Omega_1, \mathcal{F}_1)$ to $(\Omega_2 \times \Omega_3, \mathcal{F}_2 \otimes \mathcal{F}_3)$.

Definition 2.2 (Product of kernels) In the framework of Proposition 2.1, the kernel $\mathfrak{p}_{2|1} \otimes \mathfrak{p}_{3|1,2}$ from $(\Omega_1, \mathcal{F}_1)$ to $(\Omega_2 \times \Omega_3, \mathcal{F}_2 \otimes \mathcal{F}_3)$ defined is called **product of** $\mathfrak{p}_{2|1}$ and $\mathfrak{p}_{3|1,2}$.

Corollary 2.0.1 (Concatenation of kernels) Let $(\Omega_j, \mathcal{F}_j)$, j = 1, 2, 3, be mb. spaces. Let $\mathfrak{p}_{2|1}$ be a kernel from $(\Omega_1, \mathcal{F}_1)$ to $(\Omega_2, \mathcal{F}_2)$, and $\mathfrak{p}_{3|2}$ be a kernel from $(\Omega_2, \mathcal{F}_2)$ to $(\Omega_3, \mathcal{F}_3)$.

sThen the map $\mathfrak{p}_{2|1}\mathfrak{p}_{3|2}:\Omega_1\times\mathcal{F}_3\to\overline{\mathbb{R}}_+$ defined by

$$\mathfrak{p}_{2|1}\mathfrak{p}_{3|2}(\omega_1, A_3) := \int_{\Omega_2} \mathfrak{p}_{3|2}(\omega_2, A_3) \mathfrak{p}_{2|1}(\omega_1, \mathrm{d}\omega_2)$$

is a kernel from $(\Omega_1, \mathcal{F}_1)$ to $(\Omega_3, \mathcal{F}_3)$.

Definition 2.3 (Concatenation of kernels) In the framework of Corollary 2.0.1, the kernel $\mathfrak{p}_{2|1}\mathfrak{p}_{3|2}$ from $(\Omega_1, \mathcal{F}_1)$ to $(\Omega_3, \mathcal{F}_3)$ defined is called **concatenation of** $\mathfrak{p}_{2|1}$ and $\mathfrak{p}_{3|2}$.

Corollary 2.0.2 (Concatenation with a measure) Let $(\Omega_1, \mathcal{F}_1)$ and $(\Omega_2, \mathcal{F}_2)$ be measurable spaces. Let μ_1 be a probability measure on $(\Omega_1, \mathcal{F}_1)$, and $\mathfrak{p}_{2|1}$ be a kernel

from $(\Omega_1, \mathcal{F}_1)$ to $(\Omega_2, \mathcal{F}_2)$.

Then the map $\mu_1 \mathfrak{p}_{2|1} : \mathcal{F}_2 \to \overline{\mathbb{R}}_+$ defined by

$$\mu_1 \mathfrak{p}_{2|1}[A_2] := \int_{\Omega_1} \mathfrak{p}_{2|1}(\omega_1, A_2) \, \mu_1(\mathrm{d}\omega_1)$$

is a probability measure on $(\Omega_2, \mathcal{F}_2)$.

Definition 2.4 (Concatenation with a measure) In the framework of Corollary 2.0.2, the probability measure $\mu_1 \mathfrak{p}_{2|1}$ from $(\Omega_2, \mathcal{F}_2)$ defined is called **concatenation of** μ_1 and $\mathfrak{p}_{2|1}$.

Corollary 2.0.3 (Product with a measure) Let $(\Omega_1, \mathcal{F}_1)$ and $(\Omega_2, \mathcal{F}_2)$ be measurable spaces. Let μ_1 be a probability measure on $(\Omega_1, \mathcal{F}_1)$, and $\mathfrak{p}_{2|1}$ be a kernel from $(\Omega_1, \mathcal{F}_1)$ to $(\Omega_2, \mathcal{F}_2)$. Then the right-hand side of

$$\mu_1 \otimes \mathfrak{p}_{2|1}[A_{1,2}] := \int_{\Omega_1} \int_{\Omega_2} \mathbb{1}_{A_{1,2}} ((\omega_1, \omega_2)) \mathfrak{p}_{2|1}(\omega_1, \mathrm{d}\omega_2) \, \mu_1(\mathrm{d}\omega_1)$$
$$= \int_{\Omega_2} \mathfrak{p}_{2|1} (\omega_1, (A_{1,2})_{\omega_1}) \, \mu_1(\mathrm{d}\omega_1)$$

is well defined for all $A_{1,2} \in \mathcal{F}_1 \otimes \mathcal{F}_2$, and the resulting map

$$\mu_1 \otimes \mathfrak{p}_{2|1} : \mathcal{F}_1 \otimes \mathcal{F}_2 \to \overline{\mathbb{R}}_+$$

is a probability measure on $(\Omega_1 \times \Omega_2, \mathcal{F}_1 \otimes \mathcal{F}_2)$.

Definition 2.5 (Product with a measure) In the framework of Corollary 2.0.3, the probability measure $\mu_1 \otimes \mathfrak{p}_{2|1}$ on $(\Omega_1 \times \Omega_2, \mathcal{F}_1 \otimes \mathcal{F}_2)$ defined is called **product of** μ_1 and $\mathfrak{p}_{2|1}$.

Remark 2.1 (Tonelli) Integration and the product/concatenation of a kernel is commutative.

Remark 2.2 (Associativity) Products and concatenations of kernels are associative.

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $\mathcal{G} \subseteq \mathcal{F}$ be a sub- σ -algebra. Let X be a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$ taking values in a measurable space (E, \mathcal{E}) .

Definition 2.6 (Conditional distributions) A kernel P from (Ω, \mathcal{G}) to (E, \mathcal{E}) is called conditional distribution of X given \mathcal{G} if for every fixed $B \in \mathcal{E}$,

 $P(\cdot, B)$ is a conditional probability of $\{X \in B\}$ given \mathcal{G} .

If \mathcal{G} is generated by a random variable Y on $(\Omega, \mathcal{F}, \mathbb{P})$, then we speak of a conditional distribution of X given Y.

Remark 2.3 (Notation) If P is a conditional distribution of X of \mathcal{G} , then we also write $\mathbb{P}_{X|\mathcal{G}}$ instead of P.

Theorem 2.1 (Uniqueness) For any two conditional distributions P_1, P_2 of X given \mathcal{G} , we have

- (i) $P_1(\omega, B) = P_2(\omega, B) \mathbb{P}$ -a.e. $\omega \in \Omega$, for all $B \in \mathcal{E}$, and
- (*ii*) $P_1(\omega, B) = P_2(\omega, B)$ for all $B \in \mathcal{E}$, \mathbb{P} -a.e. $\omega \in \Omega$, if $\mathcal{E} = \sigma(\mathcal{E}_0)$

for some countable system $\mathcal{E}_0 \subseteq \mathcal{E}$ being closed under intersections.

Theorem 2.2 (Existence) If E is a complete and separable metric space and $\mathcal{E} = \mathcal{B}(E)$, then a conditional distribution of X given \mathcal{G} exists.

Theorem 2.3 Let P be a conditional distribution of X given \mathcal{G} , and X' be a $(\mathcal{G}, \mathcal{E}')$ measurable random variable on $(\Omega, \mathcal{F}, \mathbb{P})$ with values in (E', \mathcal{E}') . Moreover, let $f \in \mathcal{L}_{\mathbb{R}}(E \times E', \mathcal{E} \otimes \mathcal{E}')$ with $f(X, X') \in \mathcal{L}_{\mathbb{R}}^{1}(\Omega, \mathcal{F}, \mathbb{P})$.

Then there exists a $\mathbb{P}_{|\mathcal{G}}$ -null set $N \in \mathcal{G}$, such that,

$$Z(\omega) := \int_E f(x, X'(\omega)) P(\omega, \mathrm{d}x), \ \omega \in N^c, \ and \ Z(\omega) := 0, \ \omega \in N,$$

defines a conditional expectation of f(X, X') given \mathcal{G} . In particular,

$$\mathbb{E}[f(X,X')|\mathcal{G}](\omega) = \int_E f(x,X'(\omega)) \mathbb{P}_{X|\mathcal{G}}(\omega,\mathrm{d}x) \qquad \mathbb{P}\text{-}a.e. \ \omega \in \Omega.$$

Let now $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

Let X be a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$ taking values in a measurable space (E, \mathcal{E}) . Let Y be a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$ taking values in a measurable space (Ω', \mathcal{F}') .

Definition 2.7 (Factorised conditional distributions) A kernel \mathfrak{p} from (Ω', \mathcal{F}') to (E, \mathcal{E}) is called factorised conditional distribution of X given Y if

 $\mathfrak{p}(Y(\cdot), \cdot)$ is a conditional distribution of X given Y.

Remark 2.4 (Relation to factorised conditional probabilities) A kernel \mathfrak{p} from (Ω', \mathcal{F}') to (E, \mathcal{E}) is a factorised conditional distribution of X given Y if and only if for every $B \in \mathcal{E}$,

 $\mathfrak{p}(\cdot, B)$ is a factorised conditional probability of $X \in B$ given Y.

Remark 2.5 (Uniqueness) Uniqueness trivially follows from the uniqueness of conditional distributions.

Theorem 2.4 (Existence) If E is a complete and separable metric space and $\mathcal{E} = \mathcal{B}(E)$, then a factorised conditional distribution of X given Y exists.

Remark 2.6 (Notation) If \mathfrak{p} is a factorised conditional distribution of X given Y, then we also write $\mathbb{P}_{X||Y}$ instead of \mathfrak{p} .

Corollary 2.4.1 (Case distinction formula) For every factorised conditional distribution $\mathbb{P}_{X||Y}$ of X given Y we have

$$\mathbb{P}[\{X \in B\}] = \int_{\Omega'} \mathbb{P}_{X||Y}(\omega', B) \mathbb{P}_Y(\mathrm{d}\omega') \quad \text{for all } B \in \mathcal{E}.$$

Proposition 2.2 (Construction from densities) Let X' be a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$ taking values in (E', \mathcal{E}') . Let μ and μ' be σ -finite measures on (E, \mathcal{E}) and (E', \mathcal{E}') , respectively. Assume that $\mathbb{P}_{(X,X')}$ possesses a $\mu \otimes \mu'$ -density $f_{(X,X')}$.

Define the map $f_{X||X'}: E' \times E \to \overline{\mathbb{R}}_+$ by

$$f_{X||X'}(x',x) := \begin{cases} \frac{f_{(X,X')}(x,x')}{f_{X'}(x')} & \text{if } x' \in \{f_{X'} > 0\} \\ 0 & \text{else.} \end{cases}$$

Then the map $\mathfrak{p}: E' \times \mathcal{E} \to \overline{\mathbb{R}}_+$ defined by

$$\mathfrak{p}(x',B) := \begin{cases} \left(f_{X||X'}(x',\cdot)\mu\right)[B] & \text{if } x' \in \{f_{X'} > 0\}\\ \nu & else \end{cases}$$

(for arbitrary $\nu \in \mathcal{M}_1(E, \mathcal{E})$) is a factorised conditional distribution of X given X'.

Theorem 2.5 Let X' be a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$ taking values in (E', \mathcal{E}') . Let \mathfrak{p} be a factorised conditional distribution of X given X'. Let $f \in \mathcal{L}_{\overline{\mathbb{R}}}(E \times E', \mathcal{E} \otimes \mathcal{E}')$ be such that $f(X, X') \in \mathcal{L}^{1}_{\overline{\mathbb{R}}}(\Omega, \mathcal{F}, \mathbb{P})$.

Then there exists a $\mathbb{P}_{X'}$ -null set $N' \in \mathcal{E}'$ such that

$$g(x') := \int_E f(x, x') \mathfrak{p}(x', \mathrm{d}x), \ x' \in N'^c, \ and \ g(x') := 0, \ x' \in N',$$

defines a factorised conditional expectation of f(X, X') given X'. In particular,

$$\mathbb{E}[f(X,X')||X'=x'] = \int_E f(x,x') \mathbb{P}_{X||X'}(x',\mathrm{d}x) \qquad \mathbb{P}_{X'}\text{-}a.e. \ x' \in E'.$$

Theorem 2.6 (Multilevel models) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and for every j = 1, ..., k let X_j be a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$ with values in (E_j, \mathcal{E}_j) .

Assume that for every j = 2, ..., k there exists a factorised conditional distribution of X_j given $(X_1, ..., X_{j-1})$. Then we have

- (i) $\mathbb{P}_{(X_1,...,X_k)} = \mathbb{P}_{(X_1,...,X_{k-1})} \otimes \mathbb{P}_{X_k || (X_1,...,X_{k-1})}$, and
- (*ii*) $\mathbb{P}_{(X_1,...,X_k)} = \mathbb{P}_{X_1} \otimes \mathbb{P}_{X_2||X_1} \otimes \mathbb{P}_{X_3||(X_1,X_2)} \otimes \cdots \otimes \mathbb{P}_{X_k||(X_1,...,X_{k-1})}.$

3 Probability Measures on Infinite Product Spaces

Let T be a non-empty set. Let (E_t, \mathcal{E}_t) be a measurable space, $t \in T$.

The **cartesian product** of $E_t, t \in T$, is defined by

$$X_{t\in T} E_t := \{ (x_t)_{t\in T} : x_t \in E_t \text{ for all } t \in T \}.$$

For two subsets $S \subseteq U \subseteq T$, we defined the map

$$\begin{cases} \pi_{U;S} : X_{t \in U} E_t \longrightarrow X_{t \in S} E_t \\ (x_t)_{t \in U} \longmapsto (x_t)_{t \in S} . \end{cases}$$

If $S = \{t\}$, then we also write $\pi_{U;t}$ instead of $\pi_{U;\{t\}}$. If U = T, then we also write π_S and π_t instead of $\pi_{T;S}$ and $\pi_{T;\{t\}}$, respectively.

For any set Ω , we define

 $\mathfrak{P}_{\mathrm{fin}}(\Omega) := \mathrm{system}$ of all finite subsets of Ω ,

 $\mathfrak{P}_{cou}(\Omega) :=$ system of all countable subsets of Ω ,

 $\mathfrak{P}_{\circ,\mathrm{fin}}(\Omega) :=$ system of all non-empty and finite subsets of Ω , and

 $\mathfrak{P}_{\circ,\mathrm{cou}}(\Omega) :=$ system of all non-empty and countable subsets of Ω .

Definition 3.1 (Product σ -algebra) Let $S, U \in \mathfrak{P}_{\circ}(T)$ with $S \subseteq U$. The product σ -algebra $\bigotimes_{U;t\in S} \mathcal{E}_t$ of \mathcal{E}_t , $t\in S$, on $\bigotimes_{t\in U} E_t$ is defined by

$$\bigotimes_{U;t\in S} \mathcal{E}_t := \sigma\bigg(\bigcup_{t\in S} \pi_{U;t}^{-1}(\mathcal{E}_t)\bigg).$$

Theorem 3.1 Let $\mu, \mu' \in \mathcal{M}_1(X_{t \in T} E_t, \bigotimes_{T;t \in T} \mathcal{E}_t)$. Then we have $\mu = \mu'$ if and only if

$$\mu \circ \pi_{T;S}^{-1} = \mu' \circ \pi_{T;S}^{-1} \quad for \ all \ S \in \mathfrak{P}_{\circ,\mathrm{fin}}(T).$$

Definition 3.2 (Projective family) For every $S \in \mathfrak{P}_{\circ, fin}(T)$, let

$$\mu_S \in \mathcal{M}_1\left(\underset{t\in S}{\times} E_t, \bigotimes_{S;t\in S} \mathcal{E}_t\right).$$

Then $\{\mu_S\}_{S \in \mathfrak{P}_{\circ, fin}(T)}$ is called **projective family** if it satisfies the consistency condition

$$\mu_S = \mu_U \circ \pi_{U;S}^{-1} \quad \text{for all } S, U \in \mathfrak{P}_{\circ,\text{fin}}(T) \text{ with } S \subseteq U.$$
(C1)

Theorem 3.2 (Kolmogorov's extension theorem) For every $t \in T$, let E_t be a complete and separable metric space and \mathcal{E}_t be the corresponding Borel σ -algebra.

Then, for every projective family $\{\mu_S\}_{S \in \mathfrak{P}_{\circ, fin}(T)}$ of probability measures

$$\mu_S \in \mathcal{M}_1\left(\bigotimes_{t \in S} E_t, \bigotimes_{S; t \in S} \mathcal{F}_t \right)$$

there exists exactly one probability measure

$$\mu \in \mathcal{M}_1\left(\left| \bigotimes_{t \in T} E_t, \bigotimes_{T; t \in T} \mathcal{E}_t \right| \right)$$

such that

$$\mu \circ \pi_{T;S}^{-1} = \mu_S \qquad for \ all \ S \in \mathfrak{P}_{\circ,\mathrm{fin}}(T)$$

Definition 3.3 (Product measure) For every $t \in T$, let $\mu_t \in \mathcal{M}_1(E_t, \mathcal{E}_t)$.

Then, a probability measure $\mu \in \mathcal{M}_1(X_{t \in T} E_t, \bigotimes_{t \in T} \mathcal{E}_t)$ is called **product measure** of μ_t , $t \in T$, if it satisfies

$$\mu \circ \pi_{T;S}^{-1} = \bigotimes_{t \in S} \mu_t \quad \text{for all } S \in \mathfrak{P}_{\circ, \text{fin}}(T).$$

In this case, we also write $\bigotimes_{t \in T} \mu_t$ instead of μ .

Theorem 3.3 (Uniqueness) For every $t \in T$, let $\mu_t \in \mathcal{M}_1(E_t, \mathcal{E}_t)$. Then there exists at most one product measure of $\mu_t, t \in T$.

Theorem 3.4 (Existence) For every $t \in T$, let E_t be a complete and separable metric space, \mathcal{E}_t be the corresponding Borel σ -algebra and $\mu_t \in \mathcal{M}_1(E_t, \mathcal{E}_t)$. Then there exists (exactly) one product measure of $\mu_t, t \in T$.

Corollary 3.4.1 For every $t \in T$, let E_t be a complete and separable metric space, \mathcal{E}_t be the corresponding Borel σ -algebra and $\mu_t \in \mathcal{M}_1(E_t, \mathcal{E}_t)$.

Then there exists a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and independent random variables $X_t, t \in T$, on $(\Omega, \mathcal{F}, \mathbb{P})$ whose distributions $\mathbb{P}_{X_t}, t \in T$, coincide with μ_t on $(E_t, \mathcal{E}_t), t \in T$.

Corollary 3.4.2 Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. For every $t \in T$, let X_t be random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ taking values in (E_t, \mathcal{E}_t) . Then the random variables $X_t, t \in T$, are independent if and only if $\mathbb{P}_{(X_t)_{t \in T}} = \bigotimes_{t \in T} \mathbb{P}_{X_t}$.

4 Foundations of Stochastic Processes

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let (E, \mathcal{E}) be a measurable space and $T \neq \emptyset$ be a set.

Definition 4.1 (Stochastic process) A map $X : T \times \Omega \to E$ is called **stochastic** process on $(\Omega, \mathcal{F}, \mathbb{P})$ with state space (E, \mathcal{E}) and index set T if for every $t \in T$ the map $\omega \mapsto X(t, \omega)$ is $(\mathcal{F}, \mathcal{E})$ -measurable.

In this case, one also speaks of an (E, \mathcal{E}) -valued process on $(\Omega, \mathcal{F}, \mathbb{P})$ with index set T.

Remark 4.1 (Terminology) Let $X = (X_t)_{t \in T}$ be an (E, \mathcal{E}) -valued process on $(\Omega, \mathcal{F}, \mathbb{P})$ with index set T. We will use the following terminology.

For every fixed $(t, \omega) \in T \times \Omega$, $X_t(\omega)$ is called **state** of X at t given outcome ω .

For every fixed $t \in T$, X_t is called t-coordinate of X.

For every fixed $\omega \in \Omega$, $(X_t(\omega))_{t \in T}$ is called **path** (or **trajectory**) of X given outcome ω .

In particular, E^T is called **paths space** of X.

Theorem 4.1 (Random variables and processes) For a map $X : T \times \Omega \rightarrow E$ the following conditions are equivalent.

- (i) The map $\omega \mapsto (X_t(\omega))_{t \in T}$ is $(\mathcal{F}, \mathcal{E}^{\otimes T})$ -measurable.
- (ii) The map $\omega \mapsto \pi_S(X(\omega)) = (X_t(\omega))_{t \in S}$ is $(\mathcal{F}, \mathcal{E}^{S; \otimes S})$ -measurable for every $S \in \mathfrak{P}_{\circ, \text{fin}}(T)$.
- (iii) The map $\omega \mapsto \pi_t(X(\omega)) = X_t(\omega)$ is $(\mathcal{F}, \mathcal{E})$ -measurable for every $t \in T$.

Remark 4.2 Thus, every (E, \mathcal{E}) -valued process on $(\Omega, \mathcal{F}, \mathbb{P})$ with index set T is an $(E^T, \mathcal{E}^{\otimes T})$ -valued random variable on $(\Omega, \mathcal{F}, \mathbb{P})$, and vice versa.

Definition 4.2 (Distribution of a process) Let $X = (X_t)_{t \in T}$ be an (E, \mathcal{E}) -valued process on $(\Omega, \mathcal{F}, \mathbb{P})$ with index set T.

Then, $\mathbb{P}_X = \mathbb{P} \circ X^{-1}$ is called **distribution of** X. Moreover, for every $S \in \mathfrak{P}_{\circ, fin}(T)$, $\mathbb{P}_{\pi_S(X)} = \mathbb{P}_{(X_t)_{t \in S}}$ is called **finite-dimensional distribution of** X with base S.

Theorem 4.2 (Characterisation by finite projections) Let $X = (X_t)_{t \in T}$ and $X' = (X'_t)_{t \in T}$ be two (E, \mathcal{E}) -valued processes with index set T on probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and $(\Omega', \mathcal{F}', \mathbb{P}')$, respectively.

Then, $\mathbb{P}_X = \mathbb{P}'_{X'}$, if and only if $\mathbb{P}_{\pi_S(X)} = \mathbb{P}'_{\pi_S(X')}$ for all $S \in \mathfrak{P}_{\circ, \text{fin}}(T)$.

Theorem 4.3 (Existence) Let E be a complete and separable metric space and \mathcal{E} be the corresponding Borel σ -algebra.

For every projective family $\{\mu_S\}_{S \in \mathfrak{P}_{\circ, \operatorname{fin}}(T)\}}$ there exists a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and an (E, \mathcal{E}) -valued process $X = (X_t)_{t \in T}$ on $(\Omega, \mathcal{F}, \mathbb{P})$ with index set T such that $\mathbb{P}_{\pi_S(X)} = \mu_S$ for all $S \in \mathfrak{P}_{\circ, \operatorname{fin}}(T)$.

Definition 4.3 A process $X = (X_t)_{t \in T}$ on $(\Omega, \mathcal{F}, \mathbb{P})$ is said to possess independent coordinates if the family $\{X_t\}_{t \in T}$ of random variables is independent.

Corollary 4.3.1 For a process $X = (X_t)_{t \in T}$ on $(\Omega, \mathcal{F}, \mathbb{P})$ the following statements are equivalent.

- (i) X possesses independent coordinates.
- (*ii*) $\mathbb{P}_{(X_t)_{t\in T}} = \bigotimes_{t\in T} \mathbb{P}_{X_t}.$
- (*iii*) $\mathbb{P}_{(X_t)_{t\in S}} = \bigotimes_{t\in S} \mathbb{P}_{X_t}$ for all $S \in \mathfrak{P}_{\circ, \text{fin}}(T)$.

Corollary 4.3.2 Let E be a complete and separable metric space and \mathcal{E} be the corresponding Borel σ -algebra. Moreover, let $\mu_t \in \mathcal{M}_1(E, \mathcal{E}), t \in T$.

Then there exists a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and an (E, \mathcal{E}) -valued process $X = (X_t)_{t \in T}$ on $(\Omega, \mathcal{F}, \mathbb{P})$ with index set T that possesses independent coordinates and that satisfies $\mathbb{P}_{X_t} = \mu_t$ for all $t \in T$.

Example 4.1 For every $\mu_1 \in \mathcal{M}_1(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, we can find by Corollary 4.3.2 a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a real-valued process $X = (X_j)_{j \in \mathbb{N}}$ on $(\Omega, \mathcal{F}, \mathbb{P})$ with independent coordinates and $\mathbb{P}_{X_j} = \mu_1$ for all $j \in \mathbb{N}$.

Obviously, this process is nothing but a sequence of i.i.d. random variables with $\mathbb{P}_{X_1} = \mu_1$.

If in addition $\int |x| \mu_1(\mathrm{d}x) < \infty$, then each of the random variables X_j , $j \in \mathbb{N}$, is contained in $\mathcal{L}^1_{\mathbb{R}}(\Omega, \mathcal{F}, \mathbb{P})$. If $\mathbb{E}[X_1] = 0$, then the real-valued process $S = (S_n)_{n \in \mathbb{N}_0}$ defined by

$$S_0 := 0$$
 and $S_n := \sum_{j=1}^n X_j, n \in \mathbb{N}$

is called symmetric random walk with innovation distribution μ_1 .

For a random variable with a "simple" co-domain as, e.g., \mathbb{R} , the distribution \mathbb{P}_X provides "full" information on the behavior of X.

The situation is different when the co-domain of X is more complicated. Some qualitative properties of paths may differ significatly for two processes, even with the same distribution.

Example 4.2 Let $(\Omega, \mathcal{F}, \mathbb{P}) \stackrel{!}{=} ([0,1], \mathcal{B}_{[0,1]}(\mathbb{R}), \ell_{|[0,1]})$ and T := [0,1]. Let two realvalued processes $X = (X_t)_{t \in T}$ and $X' = (X'_t)_{t \in T}$ on $(\Omega, \mathcal{F}, \mathbb{P})$ be defined by $X_t(\omega) := 0$ and $X'_t(\omega) := \mathbb{1}_{\{\omega\}}(t)$.

Then, $\mathbb{P}_X = \mathbb{P}_{X'}$ but each path of X is continuous, whereas each path of X' has a discontinuity.

Theorem 4.4 (Inadequacy of the product σ **-algebra)** Let (E, \mathcal{E}) be a measurable space and T be a non-empty set. Then, for every $A \in \mathcal{E}^{\otimes T}$ there exists an $S \in \mathfrak{P}_{\circ, \text{cou}}(T)$ such that for all $f, g \in E^T$,

$$f = g \text{ on } S, f \in A \implies g \in A.$$

Remark 4.3 For each countable set $S \subseteq [0,1]$ and each $f \in C([0,1])$ there are of course plenty of functions $g \in \mathbb{R}^{[0,1]} \setminus C([0,1])$ with f = g on S. Thus, by contraposition of Theorem 4.4, the set C([0,1]) can indeed not be contained in $\mathcal{B}(\mathbb{R})^{\otimes [0,1]}$. The same is true, e.g., for the set of all monotone functions from $\mathbb{R}^{[0,1]}$.

Definition 4.4 (Modifications, indistiguishability) Let $X = (X_t)_{t \in T}$ and $Y = (Y_t)_{t \in T}$ be two (E, \mathcal{E}) -valued processes on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with index set T.

The processes X and Y are called modifications of each other if

 $X_t(\omega) = Y_t(\omega)$ for \mathbb{P} -a.a. $\omega \in \Omega$, for all $t \in T$.

The processes X and Y are called *indistiguishable* if

 $X_t(\omega) = Y_t(\omega)$ for all $t \in T$, for \mathbb{P} -a.a. $\omega \in \Omega$.

Theorem 4.5 Let $X = (X_t)_{t \in T}$ and $Y = (Y_t)_{t \in T}$ be two (E, \mathcal{E}) -valued processes on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with index set T. Then

- (i) X, Y indistiguishable $\implies X, Y$ modifications of each other.
- (ii) X, Y modifications of each other $\implies \mathbb{P}_X = \mathbb{P}_Y$.
- (iii) X, Y modifications of each other $\implies X, Y$ indistinguishable, if one of the following two conditions is met
 - (a) T is countable.
 - (b) T is an interval in R, E is a separable metric space, E is the corresponding Borel σ-algebra, and P-a.a. paths of X and Y are left-continuous of Pa.a. paths of X and Y are right-continuous.

Theorem 4.6 (Kolmogorov-Chentsov) Let (E, d) be a complete and separable metric space and \mathcal{E} be the corresponding Borel σ -algebra. Moreover, let T be a finite union of bounded intervals in \mathbb{R}^m and $X = (X_t)_{t \in T}$ be an (E, \mathcal{E}) -valued process on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with index set T. If we can find constants $q, \delta, C \in \mathbb{R}_{>0}$ such that

$$\mathbb{E}[d(X_s, X_t)^q] \le C \|s - t\|^{m+\delta} \qquad \text{for all } s, t \in T,$$

then there exists a modification of X whose paths are all continuous.

The modification can even be chosen such that for every $\gamma \in (0, \delta/q)$ the paths of the modification are all Hölder- γ -continuous.

Definition 4.5 (Product measurable) Assume that T is equipped with a σ -algebra \mathcal{T} , and let X be an (E, \mathcal{E}) -valued process $(\Omega, \mathcal{F}, \mathbb{P})$ with index set T.

The process X is called **product measurable** if the map $X : T \times \Omega \rightarrow E$ is $(\mathcal{T} \otimes \mathcal{F}, \mathcal{E})$ -measurable.

Proposition 4.1 Let T be an interval in \mathbb{R} and $X = (X_t)_{t \in T}$ be a real-valued process $(\Omega, \mathcal{F}, \mathbb{P})$ with index set T.

If the paths of X are all left-continuous or all right-continuous, and T is equipped with the Borel σ -algebra $\mathcal{B}(T) = \mathcal{B}(T) \cap T$, then X is product measurable.

Definition 4.6 (Strictly stationary) Let (E, \mathcal{E}) be a measurable space and $T \in \mathfrak{P}_{\circ}(\mathbb{R})$ be closed under additon. Then, an (E, \mathcal{E}) -valued process $X = (X_t)_{t \in T}$ is called strictly stationary if

$$\mathbb{P}_{(X_{t_1+s},\dots,X_{t_k+s})} = \mathbb{P}_{(X_{t_1},\dots,X_{t_k})}$$

for all $k \in \mathbb{N}$ and $s, t_1, \ldots, t_k \in T$.

Definition 4.7 (Independent increments) Let $T \in \mathfrak{P}_{\circ}(\mathbb{R})$. Then, an $(\mathbb{R}^m, \mathcal{B}(\mathbb{R}^m))$ valued process $X = (X_t)_{t \in T}$ is said to possess **independent increments** if for every $k \geq 2$ and $t_0, \ldots, t_k \in T$ with $t_0 < t_1 < \cdots < t_k$ the random variables

$$X_{t_1} - X_{t_0}, \ldots, X_{t_k} - X_{t_k-1}$$
 are independent.

Definition 4.8 (Increments independent of the initial state) Let $T \in \mathfrak{P}_{\circ}(\mathbb{R})$ be such that $\sigma := \inf T$ is contained in T. Then, an $(\mathbb{R}^m, \mathcal{B}(\mathbb{R}^m))$ -valued process $X = (X_t)_{t \in T}$ is said to possess independent increments that are independent independent of the initial state if for every $k \in \mathbb{N}$ and $t_0, \ldots, t_k \in T$ with $\sigma < t_1 < t_1 < \cdots < t_k$ the random variables

$$X_{\sigma}, X_{t_1} - X_{\sigma}, \dots, X_{t_k} - X_{t_k-1}$$
 are independent.

Definition 4.9 (Stationary increments) Let $T \in \mathfrak{P}_{\circ}(\mathbb{R})$ be closed under addition. Then, an $(\mathbb{R}^m, \mathcal{B}(\mathbb{R}^m))$ -valued process $X = (X_t)_{t \in T}$ on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is said to possess **stationary increments** if for every $k \in \mathbb{N}$ and $s, t_0, \ldots, t_k \in T$ with $t_0 < \cdots < t_k$, we have

$$\mathbb{P}_{(X_{t_1+s}-X_{t_0+s},\ldots,X_{t_k+s}-X_{t_{k-1}+s})} = \mathbb{P}_{(X_{t_1}-X_{t_0},\ldots,X_{t_k}-X_{t_{k-1}})} \, .$$

Lemma 4.1 Let $T \in \mathfrak{P}_{\circ}(\mathbb{R})$ be closed under addition and $\Delta T := \{t - s : s, t \in T \text{ with } s < t\}$. Moreover, let $X = (X_t)_{t \in T}$ be an $(\mathbb{R}^m, \mathcal{B}(\mathbb{R}^m))$ -valued process on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

If X possesses independent increments and for every $h \in \Delta T$ there exists a $\mu_h \in \mathcal{M}_1(\mathbb{R}^m, \mathcal{B}(\mathbb{R}^m))$, such that, $\mathbb{P}_{X_t-X_s} = \mu_h$ for all $s, t \in T$ with t - s = h, then X possesses stationary increments.

Definition 4.10 (Process, centered) Let T be a non-empty set and $p \in [1, \infty)$.

An $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ -valued process $(X_t)_{t \in T}$ on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is called $\mathcal{L}^p_{\mathbb{R}}$ -**process** if $X_t \in \mathcal{L}^p_{\mathbb{R}}(\Omega, \mathcal{F}, \mathbb{P})$ for all $t \in T$.

An $\mathcal{L}^p_{\mathbb{R}}$ -process $(X_t)_{t\in T}$ is called **centered** if $\mathbb{E}[X_t] = 0$ for all $t \in T$.

Definition 4.11 Let $X = (X_t)_{t \in T}$ be a real-valued process on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

If X is an $\mathcal{L}^1_{\mathbb{R}}$ -process, the its **mean function** $m_X: T \to \mathbb{R}$ is defined by

$$m_X(t) := \mathbb{E}[X_t]$$

If X is an $\mathcal{L}^2_{\mathbb{R}}$ -process, then its covariation function $\gamma_X : T \times T \to \mathbb{R}$ and its variance function $v_X : T \to \mathbb{R}$ are defined by

$$\gamma_X(s,t) := \operatorname{Cov}(X_s, X_t)$$
 and $v_X(t) := \operatorname{Var}(X_t)$, respectively.

Lemma 4.2 Let $T \in \mathfrak{P}_{\circ}(\mathbb{R})$ such that $\sigma := \inf T \in T$. Then, if an $\mathcal{L}^2_{\mathbb{R}}$ -process $X = (X_t)_{t \in T}$ possesses independent increments that are independent of the initial state, we have

$$\gamma_X(s,t) = v_X(\min\{s,t\})$$
 for all $s,t \in T$.

Definition 4.12 (Symmetric, positive semi-definite) A map $\gamma : T \times T \to \mathbb{R}$ is symmetric if $\gamma(s,t) = \gamma(t,s)$ for all $s,t \in T$, and positive semi-definite if $\sum_{i=1}^{k} \sum_{k=1}^{k} \lambda_i \lambda_j \gamma(t_i,t_j) \ge 0$ for $k \in \mathbb{N}$, $t_1, \ldots, t_k \in T$ and $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$.

Lemma 4.3 The covariance function γ_X of any $\mathcal{L}^2_{\mathbb{R}}$ -process $X = (X_t)_{t \in T}$ is symmetric and positive semi-definite.

Lemma 4.4 The mean function m_X of any strictly stationary $\mathcal{L}^1_{\mathbb{R}}$ -process $X = (X_t)_{t \in T}$ is constant.

For the covariance function γ_X of any strictly stationary $\mathcal{L}^2_{\mathbb{R}}$ -process $X = (X_t)_{t \in \mathbb{R}_+}$, we have

 $\gamma_X(s,t) = \gamma_X(0, |s-t|) \quad \text{for all } s, t\mathbb{R}_{\geq 0}.$

5 Poisson Processes

Definition 5.1 (Poisson process) For every $\lambda \in \mathbb{R}_{>0}$, $a (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ -valued process $N = (N_t)_{t \in \mathbb{R}_{\geq 0}}$ on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with index set $\mathbb{R}_{\geq 0}$ is called **Poisson** process with intensity λ if it possesses the following properties.

- (P1) $N_0 = 0 \mathbb{P}$ -a.s.
- (P2) N has independent increments.
- (P3) $\mathbb{P}_{N_t-N_s} = \text{Poiss}_{\lambda(t-s)}$ for all $s, t \in \mathbb{R}_{\geq 0}$ with s < t.
- (P4) \mathbb{P} -a.a. paths of N are monotonically increasing and right-continuous.

Proposition 5.1 If $N = (N_t)_{t \in \mathbb{R}_{\geq 0}}$ is a Poisson process on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, then \mathbb{P} -a.a. paths of N take values only in \mathbb{N}_0 .

Remark 5.1 Two Poisson processes with the same intensity possess the same finite dimensional distributions.

Theorem 5.1 (Existence) Let $\lambda \in \mathbb{R}_{>0}$ and $(W_j)_{j\in\mathbb{N}}$ be a sequence of *i.i.d.* realvalued random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with $\mathbb{P}_{W_1} = \text{Exp}_{\lambda}$.

Then, using the convention $\max \emptyset := \max \mathbb{N} := 0$, we can define by

$$N_t := \max\{k \in \mathbb{N} : \sum_{j=1}^k W_j \le t\}, \ t \in \mathbb{R}_{\ge 0}$$

a Poisson process $N = (N_t)_{t \in \mathbb{R}_{>0}}$ with intensity λ .

Proposition 5.2 Let $N = (N_t)_{t \in \mathbb{R}_{\geq 0}}$ be an $(\mathbb{R}_{\geq 0}, \mathcal{B}(\mathbb{R}_{\geq 0}))$ -valued process on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ that satisfies conditions (P1), (P2), (P4), and assume that \mathbb{P} -a.a. of its paths take values only in \mathbb{N}_0 .

Then, N satisfies condition (P3) for a given $\lambda \in \mathbb{R}_{>0}$ if and only if it satisfies the following conditions (P5)-(P7).

- (P5) N has stationary increments.
- (P6) N is an $\mathcal{L}^1_{\mathbb{R}}$ -process and $\mathbb{E}[N_1] = \lambda$.
- (P7) $\lim_{h \searrow 0} \mathbb{P}[\{N_h \ge 2\}]/h = 0.$

Corollary 5.1.1 Let $N = (N_t)_{t \in \mathbb{R}_{\geq 0}}$ be a Poisson process with intensity $\lambda \in \mathbb{R}_{>0}$ on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Then, for \mathbb{P} -a.a. $\omega \in \Omega$, there does **not** exist any $t \in \mathbb{R}_{>0}$ such that $N_t(\omega) - \lim_{s \nearrow t} N_s(\omega) \geq 2$.

6 Brownian Motion

Definition 6.1 Let T be a nonempty set. A $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ -valued process $X = (X_t)_{t \in T}$ on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with index set T is called a **Gaussian process** if all of its finite-dimensional distributions are normal distributions, i.e., if for every $S \in \mathfrak{P}_{o,fin}(T)$,

 $\mathbb{P}_{\pi_S(X)}$ is a #S-variate normal distribution.

Theorem 6.1 The distribution of a Gaussian process $X = (X_t)_{t \in T}$ is uniquely determined by the mean function and the covariance function of X.

Theorem 6.2 (Existence) For a non-empty set T, let $m : T \to \mathbb{R}$ be an arbitrary function and $\gamma : T \times T \to \mathbb{R}$ be a symmetric and positive semi-definite function.

Then there exists a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a Gaussian process $X = (X_t)_{t \in T}$ on $(\Omega, \mathcal{F}, \mathbb{P})$ with $m_X \equiv m$ and $\gamma_X = \gamma$.

Definition 6.2 (Brownian motion) An $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ -valued process $B = (B_t)_{t \in \mathbb{R}_{\geq 0}}$ on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with index set $\mathbb{R}_{\geq 0}$ is called 1-dimensional (standard) Brownian motion if it possesses the following properties.

- (B1) $B_0 = 0 \mathbb{P}$ -a.s..
- (B2) B has independent increments.
- (B3) $\mathbb{P}_{B_t-B_s} = \mathbb{N}_{0,t-s}$ for all $s, t \in \mathbb{R}_{>0}$ with s < t.
- (B4) \mathbb{P} -a.a. paths of B are continuous.

Remark 6.1 Two Brownian motions possess the same finite-dimensional distributions.

Proposition 6.1 Let $B = (B_t)_{t \in \mathbb{R}_{\geq 0}}$ be a Brownian motion on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Then

- (i) $\mathbb{P}_{B_t} = \mathbb{N}_{0,t}$ for all $t \in \mathbb{R}_{\geq 0}$.
- (ii) B is a $\mathcal{L}^p_{\mathbb{R}}$ -process for every $p \in [1, \infty)$.
- (*iii*) $m_B(t) := \mathbb{E}[B_t] = 0$ and $v_B(t) := \operatorname{Var}[B_t] = t$ for all $t \in \mathbb{R}_{>0}$.
- (iv) $\gamma_B(s,t) := \operatorname{Cov}(B_s, B_t) = \min\{s, t\}$ for all $s, t \in \mathbb{R}_{>0}$.

All of these four statements are valid even without assumption (B_4) .

Proposition 6.2 Let $B = (B_t)_{t \in \mathbb{R}_{\geq 0}}$ be an $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ -valued process on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ that satisfies condition (B1). Then the process B satisfies (B2) & (B3) if and only if it satisfies the following condition (B5).

$$\mathbb{P}_{(B_{t_1},\dots,B_{t_k})} = \mathcal{N}_{\mathbf{0},V_{t_1},\dots,t_k} \quad \text{for all } k \in \mathbb{N} \text{ and } t_1,\dots,t_k \in \mathbb{R}_{\geq 0} \text{ with } t_1 < \dots < t_k,$$
(B5)

where $\mathbf{0} := (0, \dots, 0)$ and $V_{t_1, \dots, t_k} := (\min\{t_i, t_j\})_{1 \le i, j \le k}$.

Remark 6.2 In the framework of Proposition 6.2, condition (B5) can be written as

B is a centered Gaussian process with covariance function $\gamma_B(s,t) = \min\{s,t\}$.

In particular, every Brownian motion possesses property (B6).

Theorem 6.3 (Existence) There exists a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a Brownian motion $B = (B_t)_{t \in \mathbb{R}_{>0}}$ on $(\Omega, \mathcal{F}, \mathbb{P})$.

B can be chosen such that \mathbb{P} -a.a. of its paths are locally Hölder- γ -continuous for every $\gamma \in (0, 1/2)$.

Proposition 6.3 (Transformations) Let $B = (B_t)_{t \in \mathbb{R}_{\geq 0}}$ be a Brownian motion on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Moreover, let $c \in \mathbb{R} \setminus \{0\}$ and $s \in \mathbb{R}_{>0}$. Then also the process $\tilde{B} = (\tilde{B}_t)_{t \in \mathbb{R}_{>0}}$ is a Brownian motion if it is defined by

- (*i*) $\tilde{B}_t := \frac{1}{c} B_{c^2 t}, t \in \mathbb{R}_{>0}.$
- (*ii*) $\tilde{B}_t := -B_t, t \in \mathbb{R}_{>0}$.
- (*iii*) $\tilde{B}_t := B_{t+s} B_s, t \in \mathbb{R}_{\geq 0}.$
- (iv) $\tilde{B}_t := tB_{1/t}, t \in \mathbb{R}_{>0}, and \tilde{B}_0 := B_0.$

Theorem 6.4 (Paley-Wiener-Zygmund) Let $B = (B_t)_{t \in \mathbb{R}_{\geq 0}}$ be a Brownian motion on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and $\gamma \in (1/2, \infty)$.

Then, \mathbb{P} -a.a. paths of B are not Hölder- γ -continuous at any point. In particular, \mathbb{P} -a.a. paths of B are not differentiable at any point.

Definition 6.3 (d-dimensional Brownian motion) An $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ -valued process $B = (B_t)_{t \in \mathbb{R}_{\geq 0}}$ on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with index set $\mathbb{R}_{\geq 0}$ is called d-dimensional (standard) Brownian motion if it possesses the following properties.

- (B1) $B_0 = 0 \mathbb{P}$ -a.s..
- (B2) B has independent increments.
- (B3) $\mathbb{P}_{B_t B_s} = \mathcal{N}_{0,(t-s)I_d}$ for all $s, t \in \mathbb{R}_{\geq 0}$ with s < t.
- (B4) \mathbb{P} -a.a. paths of B are continuous.

Theorem 6.5 If $B = (B^{(1)}, \ldots, B^{(d)})$ is a d-dimensional Brownian motion on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, then its coordinates $B^{(1)}, \ldots, B^{(d)}$ are independent 1-dimensional Brownian motions.

If, conversely, $B^{(1)}, \ldots, B^{(d)}$ are independent 1-dimensional Brownian motions on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, then $B := (B^{(1)}, \ldots, B^{(d)})$ is a d-dimensional Brownian motion.

Corollary 6.5.1 (Existence) There exists a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a ddimensional Brownian motion $B = (B_t)_{t \in \mathbb{R}_{>0}}$ on $(\Omega, \mathcal{F}, \mathbb{P})$.

7 Markov Processes

Let (E, \mathcal{E}) be a measurable space. Let $T \in \mathfrak{P}_{\circ}(\mathbb{R})$. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

Definition 7.1 (Filtration) For every $t \in T$, let \mathcal{F}_t be a sub- σ -algebra of \mathcal{F} . Then the family $(\mathcal{F}_t)_{t\in T}$ is called a *filtration in* \mathcal{F} if

 $\mathcal{F}_s \subseteq \mathcal{F}_t$ for all $s, t \in T$ with $s \leq t$.

For two filtrations $\mathbb{F} = (\mathcal{F}_t)_{t \in T}$ and $\mathbb{F}' = (\mathcal{F}'_t)_{t \in T}$ in \mathcal{F} , we henceforth write $\mathbb{F} \subseteq \mathbb{F}'$ if $\mathcal{F}_t \subseteq \mathcal{F}'_t$ for all $t \in T$.

Definition 7.2 (Adaptedness) Let $\mathbb{F} = (\mathcal{F}_t)_{t \in T}$ be a filtration in \mathcal{F} and $X = (X_t)_{t \in T}$ be an (E, \mathcal{E}) -valued process $(\Omega, \mathcal{F}, \mathbb{P})$.

The process X is said to be **adapted to the filtration** \mathbb{F} (short: \mathbb{F} -adapted) if X_t is $(\mathcal{F}_t, \mathcal{E})$ -measurable for every $t \in T$.

Definition 7.3 (Natural filtration) Let $X = (X_t)_{t \in T}$ be a (E, \mathcal{E}) -valued process on $(\Omega, \mathcal{F}, \mathbb{P})$, and set

$$\begin{aligned} \mathcal{F}_{S}^{X} &:= \sigma(X_{t}, t \in S) \quad \text{for all } S \in \mathfrak{P}_{\circ}(T), \\ \mathcal{F}_{t}^{X} &:= \mathcal{F}_{\leq t}^{X} := \mathcal{F}_{(\infty,t]\cap T}^{X} \quad \text{for all } t \in T, \\ \mathcal{F}_{\geq t}^{X} &:= \mathcal{F}_{[t,\infty)\cap T}^{X} \quad \text{for all } t \in T. \end{aligned}$$

The filtration $\mathbb{F}^X := (\mathcal{F}^X_T)_{t \in T}$ is called **natural filtration of** X.

Definition 7.4 (Markov process) Let $X = (X_t)_{t \in T}$ be an (E, \mathcal{E}) -valued process on $(\Omega, \mathcal{F}, \mathbb{P})$ and $\mathbb{F} = (\mathcal{F}_t)_{t \in T}$ be a filtration in \mathcal{F} .

The process X is called **Markov process w.r.t.** \mathbb{F} (short: \mathbb{F} -**Markov process**) if it is \mathbb{F} -adapted and satisfies

$$\mathbb{P}[\{X_t \in A\} | \mathcal{F}_s] = \mathbb{P}[\{X_t \in A\} | X_s] \quad \mathbb{P}\text{-}a.s. \text{ for all } s, t \in T \text{ with } s \leq t \text{ and } A \in \mathcal{E}.$$

If \mathbb{F} coincides with the natural filtration \mathbb{F}^X of X, then X is simply referred to as **Markov process**.

Proposition 7.1 (Equivalent properties) For a (E, \mathcal{E}) -valued process $X = (X_t)_{\in T}$ on $(\Omega, \mathcal{F}, \mathbb{P})$, the following five conditions are equivalent.

(i) For all $k \in \mathbb{N}$, $t_1, \ldots, t_k, t \in T$ with $t_1 < \cdots < t_k < t$ and $A \in \mathcal{E}$

 $\mathbb{P}[\{X_t \in A\} | (X_{t_1}, \dots, X_{t_k})] = \mathbb{P}[\{X_t \in A\} | X_{t_k}] \quad \mathbb{P}\text{-}a.s..$

- (ii) X possesses the Markov property for $\mathbb{F} := \mathbb{F}^X$.
- (iii) For all $s \in T$ and $B \in \mathcal{F}_{\geq s}^X$

$$\mathbb{P}[B|\mathcal{F}_s^X] = \mathbb{P}[B|X_s] \quad \mathbb{P}\text{-}as..$$

(iv) For all $s \in T$, $T_s := [s, \infty) \cap T$, and bounded $f \in \mathcal{L}_{\mathbb{R}}(E^{T_s}, \mathcal{E}^{\otimes T_s})$

$$\mathbb{E}[f(\pi_{t_s}(X))|\mathcal{F}_s^X] = \mathbb{E}[f(\pi_{T_s}(X))|X_s] \quad \mathbb{P}\text{-}a.s.$$

(v) For all $s \in T$, $A \in \mathcal{F}_s^X$ and $B \in \mathcal{F}_{>s}^X$

$$\mathbb{P}[A \cap B | X_s] = \mathbb{P}[A | X_s] \mathbb{P}[B | X_s] \quad \mathbb{P}\text{-}a.s..$$

Definition 7.5 (Transition probability) Let $X = (X_t)_{t \in T}$ be an (E, \mathcal{E}) -valued Markov process on $(\Omega, \mathcal{F}, \mathbb{P})$.

If, for $s, t \in T$ with $s \leq t$, there exists a factorised conditional distribution of X_t given X_s , then it is referred to as **transition probability** of the Markov process X **from** s **to** t.

Proposition 7.2 Let $X = (X_t)_{t \in T}$ be an (E, \mathcal{E}) -valued Markov process on $(\Omega, \mathcal{F}, \mathbb{P})$. Assume that for all $s, t \in T$ with $s \leq t$ there exists a factorised conditional distribution $\mathbb{P}_{X_t \mid\mid X_s}$ of X_t given X_s . Then

- (i) $\mathbb{P}_{X_t||X_t}(x, \cdot) = \delta_x[\cdot]$ for all $t \in T$ and $x \in E$.
- (ii) $\mathbb{P}_{X_t||X_s} = \mathbb{P}_{X_u||X_s} \mathbb{P}_{X_t||X_u}$ for all $s, u, t \in T$ with $s \leq u \leq t$.

Definition 7.6 A family $\mathfrak{P} = (\mathfrak{p}_{s,t})_{s,t\in T:s\leq t}$ of kernels from (E,\mathcal{E}) to (E,\mathcal{E}) is called a Markov transition function on (E,\mathcal{E}) if

- (i) $\mathfrak{p}_{t,t}(x,\cdot) = \delta_x[\cdot]$ for all $t \in T$ and $x \in E$,
- (ii) $\mathfrak{p}_{s,t} = \mathfrak{p}_{s,u}\mathfrak{p}_{u,t}$ for $s, u, t \in T$ with $s \leq u \leq t$.

In the framework of Definition 7.5, $\mathfrak{P}^X := (\mathbb{P}_{X_t||X_s})_{s,t\in T:s\leq t}$ is called Markov transition function of the Markov process X.

Lemma 7.1 (Markov property as transition probability) Let $X = (X_t)_{t \in T}$ be an (E, \mathcal{E}) -valued Markov process on $(\Omega, \mathcal{F}, \mathbb{P})$ and $t_1, \ldots, t_k, t \in T$ with $t_1 \leq \cdots \leq t_k \leq t$.

Then, if there exists a factorised conditional distribution $\mathbb{P}_{X_t||X_{t_k}}$ of X_t given X_{t_k} ,

$$\mathbb{P}_{X_t||(X_{t_1},\dots,X_{t_k})} := \mathbb{P}_{X_t||X_{t_k}}$$

is a factorised conditional distribution of X_t given $(X_{t_1}, \ldots, X_{t_k})$.

Proposition 7.3 (Finite-dimensional distributions) Let $X = (X_t)_{t \in T}$ be an (E, \mathcal{E}) -valued Markov process on $(\Omega, \mathcal{F}, \mathbb{P})$ and $t_0, \ldots, t_k \in T$ with $t_0 \leq \cdots \leq t_k$.

Assume that there exists a factorised conditional distribution $\mathbb{P}_{X_{t_j}||X_{t_{j-1}}}$ of X_{t_j} given $X_{t_{j-1}}$ for every $j = 2, \ldots, k$

(i) $\mathbb{P}_{(X_{t_1},\ldots,X_{t_k})} = \mathbb{P}_{X_{t_1}} \otimes \mathbb{P}_{X_{t_2}||X_{t_1}} \otimes \cdots \otimes \mathbb{P}_{X_{t_k}||X_{t_{k-1}}},$

and for every $j = 1, \ldots, k$

- (*ii*) $\mathbb{P}_{(X_{t_1},\ldots,X_{t_k})} = (\mathbb{P}_{X_{t_0}}\mathbb{P}_{X_{t_1}||X_{t_0}}) \otimes \mathbb{P}_{X_{t_2}||X_{t_1}} \otimes \cdots \otimes \mathbb{P}_{X_{t_k}||X_{t_{k-1}}}, and$
- (*iii*) $\mathbb{P}_{(X_{t_1},\ldots,X_{t_k})||X_{t_0}} = \mathbb{P}_{X_{t_1}||X_{t_0}} \otimes \cdots \otimes \mathbb{P}_{X_{t_k}||X_{t_{k-1}}}.$

Theorem 7.1 (Existence) Asumme that E is a complete and separable metric space and \mathcal{E} is the corresponding Borel- σ algebra. Moreover, assume that $\sigma := \inf T \in T$.

Then, for every $\mu_{\sigma} \in \mathcal{M}_1(E, \mathcal{E})$ and every Markov transition function $\mathfrak{P} = (\mathfrak{p}_{s,t})_{s,t\in T:s\leq t}$ on (E, \mathcal{E}) , there exists a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and an (E, \mathcal{E}) -valued Markov process $X = (X_t)_{t\in T}$ on $(\Omega, \mathcal{F}, \mathbb{P})$ with initial distribution $\mathbb{P}_{X_{\sigma}} = \mu_{\sigma}$ and Markov transition function \mathfrak{P} .

Theorem 7.2 Assume that $\sigma := \inf T \in T$. Let $X = (X_t)_{t \in T}$ be a $(\mathbb{R}^m, \mathcal{B}(\mathbb{R}^m))$ -valued process on $(\Omega, \mathcal{F}, \mathbb{P})$.

If X possesses independent increments that are independent of the initial state, then X is a Markov process.

Example 7.1 Let $B = (B_t)_{t \in \mathbb{R}_{\geq 0}}$ be a Brownian motion on $(\Omega, \mathcal{F}, \mathbb{P})$, and let $\mathfrak{P} = (\mathfrak{p}_{s,t})_{s,t \in \mathbb{R}_{\geq 0}: s \leq t}$ be a family of kernels from $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ to $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ that are given by

$$\mathfrak{p}_{s,t}(x,A) := \mathcal{N}_{x,t-s}[A], \ (x,A) \in \mathbb{R} \times \mathcal{B}(\mathbb{R}).$$

Then, B is a Markov process with Markov transition function \mathfrak{P} .

Example 7.2 Let $N = (N_t)_{t \in \mathbb{R}_{\geq 0}}$ be a Poisson process with intensity $\lambda \in \mathbb{R}_{>0}$ on $(\Omega, \mathcal{F}, \mathbb{P})$, and let $\mathfrak{P} = (\mathfrak{p}_{s,t})_{s,t \in \mathbb{R}_{\geq 0}: s \leq t}$ be a family of kernels from $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ to $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ that are given by

$$\mathfrak{p}_{s,t}(x,A) := \operatorname{Poiss}_{\lambda(t-s)}[A-x], \ (x,A) \in \mathbb{R} \times \mathcal{B}(\mathbb{R}).$$

Then, N is a Markov process with Markov transition function \mathfrak{P} .

8 Martingales, Sub- and Supermartingales

Let $T \in \mathfrak{P}_{\circ}(\mathbb{R})$.

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

Definition 8.1 (Martingale) Let $\mathbb{F} = (\mathcal{F}_t)_{t \in T}$ be a filtration in \mathcal{F} and $X = (X_t)_{t \in T}$ be an $\mathcal{L}^1_{\mathbb{R}}$ -process on $(\Omega, \mathcal{F}, \mathbb{P})$. If the process X is \mathbb{F} -adapted then it is called

- (i) \mathbb{F} -martingale if $\mathbb{E}[X_t | \mathcal{F}_s] = X_s \mathbb{P}$ -a.s. $\forall s, t \in T$ with $s \leq t$.
- (ii) \mathbb{F} -submartingale if $\mathbb{E}[X_t | \mathcal{F}_s] \ge X_s \mathbb{P}$ -a.s. $\forall s, t \in T$ with $s \le t$.
- (iii) \mathbb{F} -supermartingale if $\mathbb{E}[X_t|\mathcal{F}_s] \leq X_s \mathbb{P}$ -a.s. $\forall s, t \in T$ with $s \leq t$.

If X is in addition an $\mathcal{L}^p_{\mathbb{R}}$ -process for some $p \in (1, \infty)$. then one speaks of an $\mathcal{L}^p_{\mathbb{R}}$ - \mathbb{F} -(sub-, super-) martingale.

If \mathbb{F} is the natural filtration \mathbb{F}^X of X, then one simply speaks of a (sub-, super-) martingale.

Proposition 8.1 (Transformations) Let $\mathbb{F} = (\mathcal{F}_t)_{t \in T}$ be a filtration in \mathcal{F} , and $X = (X_t)_{t \in T}$ and $(Y_t)_{t \in T}$ be two $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ -valued processes on $(\Omega, \mathcal{F}, \mathbb{P})$. Then

- (i) X is a \mathbb{F} -supermartingale if and only if $-X := (-X_t)_{t \in T}$ is a \mathbb{F} -submartingale.
- (ii) If X and Y are \mathbb{F} -martingales and $a, b \in \mathbb{R}$, then $aX + bY := (aX_t + bY_t)_{t \in T}$ is a \mathbb{F} -martingale.
- (iii) If X and Y are \mathbb{F} -supermartingales and $a, b \in \mathbb{R}_{\geq 0}$, then $aX + bY := (aX_t + bY_t)_{t \in T}$ is a \mathbb{F} -supermartingale.
- (iv) If X and Y are \mathbb{F} -submartingales and $a, b \in \mathbb{R}_{\geq 0}$, then $aX + bY := (aX_t + bY_t)_{t \in T}$ is a \mathbb{F} -submartingale.
- (v) If X and Y are \mathbb{F} -supermartingales, then $X \wedge Y := (\min\{X_t, Y_t\})_{t \in T}$ is a \mathbb{F} -supermartingale.
- (vi) If X and Y are \mathbb{F} -submartingales, then $X \wedge Y := (\max\{X_t, Y_t\})_{t \in T}$ is a \mathbb{F} -submartingale.
- (vii) If X is an \mathbb{F} -martingale and $f : \mathbb{R} \to \mathbb{R}$ is a convex function such that the process $Y := (Y_t)_{t \in T}$ defined by $Y_t := f(X_t), t \in T$, is an $\mathcal{L}^1_{\mathbb{R}}$ -process, then Y is an \mathbb{F} -submartingale.

Lemma 8.1 Let $\xi \in \mathcal{L}^1_{\mathbb{R}}(\Omega, \mathcal{F}, \Omega)$ and $\mathbb{F} = (\mathcal{F}_t)_{t \in T}$ be a filtration in \mathcal{F} . Then, the process $X = (X_t)_{t \in T}$ defined by $X_t := \mathbb{E}[\xi|\mathcal{F}_t], t \in T$ is a \mathbb{F} -martingale.

Proposition 8.2 Let $\mathbb{F} = (\mathcal{F}_t)_{t \in T}$ be a filtration in \mathcal{F} and $X = (X_t)_{t \in T}$ be a \mathbb{F} -adapted $\mathcal{L}^1_{\mathbb{R}}$ -process on $(\Omega, \mathcal{F}, \mathbb{P})$. Then

- (i) If \mathbb{P} -a.a. paths of X are monotonically increasing, then X is a \mathbb{F} -submartingale.
- (ii) If \mathbb{P} -a.a. paths of X are monotonically decreasing, then X is a \mathbb{F} -supermartingale.

Example 8.1 Every Poisson process is a submartingale.

Proposition 8.3 Assume that $\sigma := \inf T \in T$, and let $X = (X_t)_{t \in T}$ be a $\mathcal{L}^1_{\mathbb{R}}$ -process on $(\Omega, \mathcal{F}, \mathbb{P})$.

Then if X possesses a constant mean function as well as independent increments that are independent of the initial state, X is a martingale.

Example 8.2 Every 1-dimensional Brownian motion is a martingale.

Example 8.3 (Symmetric random walk) Let $S = (S_n)_{n \in \mathbb{N}_0}$ be the symmetric random walk defined by

- $S_0 := 0$,
- $S_n := \sum_{j=1}^n X_j, n \in \mathbb{N},$

where $(X_j)_{j\in\mathbb{N}}$ is a sequence of independent random variables in $\mathcal{L}^1_{\mathbb{R}}(\Omega, \mathcal{F}, \mathbb{P})$ such that $\mathbb{E}[X_j] = 0$ for all $j \in \mathbb{N}$. Moreover, let the filtration $\mathbb{F}^X = (\mathcal{F}^X_n)_{n\in\mathbb{N}_0}$ be given by

- $\mathcal{F}_0^X := \{ \emptyset, \Omega \},$
- $\mathcal{F}_n^X := \sigma(X_1, \dots, X_n), n \in \mathbb{N}.$

Then, S is a \mathbb{F}^X -martingale.

Definition 8.2 (Predictable process) Let $\mathbb{F} = (\mathcal{F}_n)_{n \in \mathbb{N}_0}$ be a filtration in \mathcal{F} and $H = (H_n)_{n \in \mathbb{N}}$ be a process on $(\Omega, \mathcal{F}, \mathbb{P})$ taking values in a measurable space (E, \mathcal{E}) . Then, H is called \mathbb{F} -predictable if H_n is $(\mathcal{F}_{n-1}, \mathcal{E})$ -measurable for every $n \in \mathbb{N}$.

Definition 8.3 (Martingale transformation) Let $\mathbb{F} = (\mathcal{F}_n)_{n \in \mathbb{N}_0}$ be a filtration in \mathcal{F} , and $X = (X_n)_{n \in \mathbb{N}_0}$ and $H = (H_n)_{n \in \mathbb{N}}$ are two $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ -valued processes on $(\Omega, \mathcal{F}, \mathbb{P})$.

Then, the process $H \bullet X = (H \bullet X_n)_{n \in \mathbb{N}_0}$ defined by

$$H \bullet X_0 := 0 \quad and \quad H \bullet X_n := \sum_{j=1}^n H_j(X_j - X_{j-1}), \quad n \in \mathbb{N}$$

is called martingale transformation of X w.r.t. H.

Remark 8.1 The process $H = (H_n)_{n \in \mathbb{N}}$ will be called **locally bounded** if for every $n \in \mathbb{N}$ there exists some $c_n \in \mathbb{R}_{>0}$ such that $|H_n| \leq c_n \mathbb{P}$ -a.s..

Proposition 8.4 (Properties) Let $\mathbb{F} = (\mathcal{F}_n)_{n \in \mathbb{N}_0}$ be a filtration in \mathcal{F} , and $X = (X_n)_{n \in \mathbb{N}_0}$ and $H = (H_n)_{n \in \mathbb{N}}$ be two $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ -valued processes on $(\Omega, \mathcal{F}, \mathbb{P})$. Moreover, let $H \bullet X$ be the martingale transformation of X w.r.t. H.

- (i) If H is \mathbb{F} -predictable, $\mathbb{R}_{\geq 0}$ -valued and locally bounded, then $H \bullet X$ is a \mathbb{F} -submartingale if X is a \mathbb{F} -submartingale.
- (ii) If H is \mathbb{F} -predictable, $\mathbb{R}_{\geq 0}$ -valued and locally bounded, then $H \bullet X$ is a \mathbb{F} -supermartingale if X is a \mathbb{F} -supermartingale.
- (iii) If H is F-predictable, R≥0-valued L²_ℝ-process, then H X is a F-submartingale if X is a L²_ℝ-F-submartingale.
- (iv) If H is \mathbb{F} -predictable, $\mathbb{R}_{\geq 0}$ -valued $\mathcal{L}^2_{\mathbb{R}}$ -process, then $H \bullet X$ is a \mathbb{F} -supermartingale if X is a $\mathcal{L}^2_{\mathbb{R}}$ - \mathbb{F} -supermartingale.
- (v) If H is \mathbb{F} -predictable and locally bounded, then $H \bullet X$ is a \mathbb{F} -martingale if X is a \mathbb{F} -martingale.
- (vi) If H is a \mathbb{F} -predictable $\mathcal{L}^2_{\mathbb{R}}$ -process, then $H \bullet X$ is a \mathbb{F} -martingale if X is a $\mathcal{L}^2_{\mathbb{R}}$ - \mathbb{F} -martingale.

Theorem 8.1 (Doob decomposition) Let $\mathbb{F} = (\mathcal{F}_n)_{n \in \mathbb{N}_0}$ be a filtration in \mathcal{F} , and $X = (X_n)_{n \in \mathbb{N}_0}$ be a \mathbb{F} -adapted $\mathcal{L}^1_{\mathbb{R}}$ -process on $(\Omega, \mathcal{F}, \mathbb{P})$. Then

- (i) On $(\Omega, \mathcal{F}, \mathbb{P})$, there exist a \mathbb{F} -martingale $M = (M_n)_{n \in \mathbb{N}_0}$ with $M_0 = 0$ \mathbb{P} -a.s. and a \mathbb{F} -predictable $\mathcal{L}^1_{\mathbb{R}}$ -process $A = (A_n)_{n \in \mathbb{N}}$ such that $X_n = X_0 + M_n + A_n$ \mathbb{P} -a.s. for all $n \in \mathbb{N}_0$, where $A_0 := 0$.
- (ii) The decomposition in (i) is \mathbb{P} -a.s. unique and has the form

$$A_{n} = \sum_{j=1}^{n} \mathbb{E}[X_{j} - X_{j-1} | \mathcal{F}_{j-1}] = \sum_{j=1}^{n} \mathbb{E}[X_{j} | \mathcal{F}_{j-1}] - X_{j-1} \quad \mathbb{P}\text{-}a.s$$
$$M_{n} = X_{n} - A_{n} - X_{0} = \sum_{j=1}^{n} X_{j} - \mathbb{E}[X_{j} | \mathcal{F}_{j_{1}}] \quad \mathbb{P}\text{-}a.s.$$

- (iii) X is a \mathbb{F} -submartingale if and only if \mathbb{P} -a.a. paths of A are monotonically increasing.
- (iv) X is a \mathbb{F} -supermartingale if and only if \mathbb{P} -a.a. paths of A are monotonically decreasing.

Definition 8.4 (Compensator) In the framework of Theorem 8.1, the \mathbb{P} -a.s. unique \mathbb{F} -predictable process A is called compensator of X (w.r.t. \mathbb{F}).

Corollary 8.1.1 Let $\mathbb{F} = (\mathcal{F}_n)_{n \in \mathbb{N}_0}$ be a filtration in \mathcal{F} and $X = (X_n)_{n \in \mathbb{N}_0}$ be a $\mathcal{L}^2_{\mathbb{R}}$ - \mathbb{F} -martingale on $(\Omega, \mathcal{F}, \mathbb{P})$.

Then, there exist a centered \mathbb{F} -martingale $M = (M_n)_{n \in \mathbb{N}_0}$ with $M_0 = 0$ \mathbb{P} -a.s. and a \mathbb{F} -predictable $\mathcal{L}^1_{\mathbb{R}}$ -process $A = (A_n)_{n \in \mathbb{N}}$ such that

$$X_n^2 = X_0^2 + M_n + A_n$$
 \mathbb{P} -a.s. for all $n \in \mathbb{N}_0$,

where $A_0 := 0$.

This decomposition of the process $X^2 := (X_n^2)_{n \in \mathbb{N}}$ is \mathbb{P} -a.s. unique and \mathbb{P} -a.a. paths of A are monotonically increasing.

Definition 8.5 (Quadratic variation process) In the framework of Corollary 8.1.1, the \mathbb{P} -a.s. unique monotonically increasing and \mathbb{F} -predictable process A is called **quadratic** variation process of X. We also write $\langle X \rangle$ and $\langle X \rangle_n$ instead of A and A_n , respectively.

Proposition 8.5 Let $\mathbb{F} = (\mathcal{F}_n)_{n \in \mathbb{N}_0}$ be a filtration in \mathcal{F} and $X = (X_n)_{n \in \mathbb{N}_0}$ be a $\mathcal{L}^2_{\mathbb{R}}$ - \mathbb{F} -martingale on $(\Omega, \mathcal{F}, \mathbb{P})$. Then, the following assertions hold true for the quadratic variation process $\langle X \rangle = (\langle X \rangle_n)_{n \in \mathbb{N}_0}$ of X.

- (i) $\mathbb{E}[\langle X \rangle_n] = \mathbb{E}[X_n^2] \mathbb{E}[X_0^2] = \mathbb{E}[(X_n X_0)^2] = \operatorname{Var}[X_n X_0] \text{ for all } n \in \mathbb{N}_0.$
- (*ii*) $\langle X \rangle_n \langle X \rangle_{n-1} = \mathbb{E}[(X_n X_{n-1})^2 | \mathcal{F}_{n-1}] \mathbb{P}$ -a.s. for all $n \in \mathbb{N}$.
- (iii) $\langle X \rangle_n = \sum_{j=1}^n \mathbb{E}[(X_j X_{j-1})^2 | \mathcal{F}_{j-1}] \mathbb{P}$ -a.s. for all $n \in \mathbb{N}$.

Example 8.4 (Symmetric random walk) Let $S = (S_n)_{n \in \mathbb{N}_0}$ be the symmetric random walk defined by $S_0 := 0$ and $S_n := \sum_{j=1}^n X_j, n \in \mathbb{N}$, where $(X_j)_{j \in \mathbb{N}}$ is a sequence of independent random variables from $\mathcal{L}^1_{\mathbb{R}}(\Omega, \mathcal{F}, \mathbb{P})$ with $\mathbb{E}[X_j] = 0, j \in \mathbb{N}$.

According to Example 8.3, S is a $(\mathcal{L}^2_{\mathbb{R}})$ - \mathbb{F}^X -martingale.

For the quadratic variation process $\langle S \rangle$ of S, we have

$$\langle S \rangle_n = \sum_{j=1}^n \mathbb{E}[X_j^2] \quad \mathbb{P}\text{-}a.s. \text{ for all } n \in \mathbb{N}.$$

If the innovations $X_j, j \in \mathbb{N}$, are identically distributed (or if, at least, all of them possess the same 2-nd moment), then specifically

$$\langle S \rangle_n = n \mathbb{E}[X_1^2] = n \operatorname{Var}[X_1] \quad \mathbb{P}\text{-}a.s. \text{ for all } n \in \mathbb{N}.$$

Definition 8.6 (Stopping time) Let $\mathbb{F} = (\mathcal{F}_t)_{t \in T}$ be a filtration in \mathcal{F} . A map $\tau : \Omega \to T \cup \{+\infty\}$ is called **stopping time w.r.t.** \mathbb{F} (short: \mathbb{F} -stopping time) if $\{\tau \leq t\} \in \mathcal{F}_t$ for all $t \in T$. **Proposition 8.6** Let $\mathbb{F} = (\mathcal{F}_t)_{t \in T}$ be a filtration in \mathcal{F} and τ and σ be two \mathbb{F} -stopping times. Then also the maps $\tau \wedge \sigma, \tau \vee \sigma : \Omega \to T \cup \{\infty\}$ defined by

$$\begin{aligned} \tau \wedge \sigma(\omega) &:= \min\{\tau(\omega), \sigma(\omega)\}, \quad \omega \in \Omega \\ \tau \lor \sigma(\omega) &:= \max\{\tau(\omega), \sigma(\omega)\}, \quad \omega \in \Omega \end{aligned}$$

are \mathbb{F} -stopping times. If T is contained in $\mathbb{R}_{\geq 0}$ and closed under addition, then also the map $\tau + \sigma : \Omega \to T \cup \{\infty\}$ defined by

$$(\tau + \sigma)(\omega) := \tau(\omega) + \sigma(\omega), \quad \omega \in \Omega$$

is a \mathbb{F} -stopping time.

Lemma 8.2 Let $\mathbb{F} = (\mathcal{F}_t)_{t \in T}$ be a filtration in \mathcal{F} and τ be an \mathbb{F} -stopping time. Then, the following system of sets is a sub- σ -algebra of \mathcal{F}

$$\mathcal{F}_{\tau} := \{ A \in \mathcal{F} : A \cap \{ \tau \le t \} \in \mathcal{F}_t \text{ for all } t \in T \}.$$

Definition 8.7 (\sigma-algebra of the τ -history) Let $\mathbb{F} = (\mathcal{F}_t)_{t \in T}$ be a filtration in \mathcal{F} and τ be an \mathbb{F} -stopping time.

Then, \mathcal{F}_{τ} defined by Lemma 8.2 is called σ -algebra of the τ -history.

Example 8.5 (Hitting time) Let $\mathbb{F} = (\mathcal{F}_n)_{n \in \mathbb{N}_0}$ be a filtration in \mathcal{F} , and $X = (X_n)_{n \in \mathbb{N}_0}$ be an \mathbb{F} -adapted process taking values in a measurable space (E, \mathcal{E}) .

Then, for every $A \in \mathcal{E}$,

$$\tau_A(\omega) := \min\{n \in \mathbb{N}_0 : X_n(\omega) \in A\}, \quad \omega \in \Omega$$

defines an \mathbb{F} -stopping time τ_A , where we set $\min \emptyset := \infty$.

Remark 8.2 (Notation) For any process $X = (X_n)_{n \in \mathbb{N}_0}$ and any stopping time τ w.r.t. a filtration $\mathbb{F} = (\mathcal{F}_n)_{n \in \mathbb{N}_0}$, we will henceforth use the notation

$$X_{\tau}(\omega) := X_{\tau(\omega)}(\omega), \quad \omega \in \{\tau \in \mathbb{N}_0\},\$$

and as before \mathcal{F}_{τ} denotes the σ -algebra of the τ -history.

Theorem 8.2 (Optional sampling) Let $\mathbb{F} = (\mathcal{F}_n)_{n \in \mathbb{N}_0}$ be a filtration in \mathcal{F} , let $X = (X_n)_{n \in \mathbb{N}_0}$ be an \mathbb{F} -adapted $\mathcal{L}^1_{\mathbb{R}}$ -process on $(\Omega, \mathcal{F}, \mathbb{P})$, and let σ and τ be two \mathbb{F} -stopping time with $\sigma \leq \tau$. If X is an \mathbb{F} -martingale (-submartingale, -supermartingale) and τ is \mathbb{P} -a.s. bounded, then

$$\mathbb{E}[X_{\tau}|\mathcal{F}_{\sigma}] = (\geq, \leq) X_{\sigma} \quad \mathbb{P}\text{-}a.s.$$

and in particular $\mathbb{E}[X_{\tau}] = (\geq, \leq)\mathbb{E}[X_{\sigma}].$

Corollary 8.2.1 (Martingale test) Let $\mathbb{F} = (\mathcal{F}_n)_{n \in \mathbb{N}_0}$ be a filtration \mathcal{F} and $X = (X_n)_{n \in \mathbb{N}_0}$ be an \mathbb{F} -adapted $\mathcal{L}^1_{\mathbb{R}}$ -process on $(\Omega, \mathcal{F}, \mathbb{P})$.

Then, X is an \mathbb{F} -martingale if and only if $\mathbb{E}[X_{\tau}] = \mathbb{E}[X_0]$ for every \mathbb{P} -a.s. bounded \mathbb{F} -stopping time τ .

Definition 8.8 For any filtration $\mathbb{F} = (\mathcal{F}_n)_{n \in \mathbb{N}_0}$ in \mathcal{F} and any $n \in \mathbb{N}_0$, we set

$$\mathcal{F}_n^{\tau} := \mathcal{F}_{\tau \wedge n}$$
.

Definition 8.9 (Stopped process) Let $\mathbb{F} = (\mathcal{F}_n)_{n \in \mathbb{N}_0}$ be a filtration in \mathcal{F} . For any \mathbb{F} -stopping time τ and any \mathbb{F} -adapted process $X = (X_n)_{n \in \mathbb{N}_0}$ on $(\Omega, \mathcal{F}, \mathbb{P})$ taking values in a measurable space (E, \mathcal{E}) , the process $X^{\tau} = (X_n^{\tau})_{n \in \mathbb{N}_0}$ defined by

$$X_n^{\tau}(\omega) := X_{\tau \wedge n}(\omega) = X_{\min\{n,\tau(\omega)\}}(\omega)$$

is said to be the corresponding stopped process.

Theorem 8.3 (Optional stopping) Let $\mathbb{F} = (\mathcal{F}_n)_{n \in \mathbb{N}_0}$ be a filtration in \mathcal{F} and τ be a \mathbb{F} -stopping time. Moreover, let $X = (X_n)_{n \in \mathbb{N}_0}$ be a \mathbb{F} -adapted $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ -valued process on $(\Omega, \mathcal{F}, \mathbb{P})$.

If X is a martingale (submartingale, supermartingale) w.r.t. \mathbb{F} , then the stopped process $X^{\tau} = (X_n^{\tau})_{n \in \mathbb{N}_0}$ is a martingale (submartingale, supermartingale) w.r.t. both \mathbb{F} and \mathbb{F}^{τ} .

Example 8.6 Let $(X_j)_{j\in\mathbb{N}}$ be a sequence of i.i.d. real-valued random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ with $\mathbb{P}_{X_1} = \frac{1}{2}\delta_{-1} + \frac{1}{2}\delta_1$, and $\mathbb{F}^X = (\mathcal{F}_n^X)_{n\in\mathbb{N}_0}$ be given by $\mathcal{F}_0^X := \{\emptyset, \Omega\}$, $\mathcal{F}_n^X := \sigma(X_1, \ldots, X_n), n \in \mathbb{N}$. Set $S_0 := 0, S_n := \sum_{j=1}^n X_j, n \in \mathbb{N}$. $S = (S_n)_{n\in\mathbb{N}_0}$ is an \mathcal{F}^X -martingale. For $a, b \in \mathbb{Z}$ with a < 0 and b > 0, let

- $\tau_a := \min\{n \in \mathbb{N}_0 : S_n = a\},\$
- $\tau_b := \min\{n \in \mathbb{N}_0 : S_n = b\},\$
- $\tau_{a,b} := \tau_a \wedge \tau_b$.

We know that $\tau_a, \tau_b, \tau_{a,b}$ are \mathbb{F}^X -stopping times. For these stopping times, we have

- (i) $\mathbb{P}[\{\tau_{a,b} = \tau_a\}] = b/(|a|+b),$
- (*ii*) $\mathbb{E}[\tau_{a,b}] = |a|b$,
- (*iii*) $\mathbb{E}[\tau_a] = \infty$.