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1 A Crash Course in Measure Theory
1.1 Elementary Definitions in Measure Theory
Definition 1.1 (σ-algebra, Measureable space) ▷ 08.10.2019
Let Ω 6= ∅. A ⊆ 2Ω is called a σ-algebra over Ω if

1. Ω ∈ A,

2. A ∈ A ⇒ AC ∈ A and

3. A1, A2, . . . ∈ A ⇒
⋃∞
i=1Ai ∈ A .

(Ω,A) is called a measurable space.

Definition 1.2 (Measure, Measure space)
Let (Ω,A) be a measurable space, then a function µ : A → [0,∞] is called a measure on (Ω,A) if

· µ(∅) = 0 and

· µ is σ-additive, i.e. for all A1, A2, . . . ∈ A pairwise disjoint,
we have µ(

⋃∞
i=1Ai) =

∑∞
i=1 µ(Ai) .

We call (Ω,A, µ) a measure space.

Definition 1.3 (Probability measure, Probability space, Event)
If µ is a measure on (Ω,A) with µ(Ω) = 1, we call it a probability measure, (Ω,A, µ) a probability
space and A ∈ A an event.

Remark 1.1 We write P := µ if µ is a probability measure.

Further Concepts Related to Measures

· Generated σ-algebra: Let M⊆ 2Ω, then

σ (M) :=
⋂

A σ-algebra
M⊆A

A

is called the generated σ-algebra of M over Ω.

· Initial σ-algebra: Let I be an arbitrary index set and for i ∈ I let fi : Ω→ Ωi be a function and
(Ωi,Ai) be a measurable space. We call

I((fi)i∈I) := σ

(⋃
i∈I

f−1
i (Ai)

)

the initial σ-algebra on Ω generated by (fi)i∈I .

· Borel σ-algebra: Let (T, τ) be a topological space, then then then Borel σ-algebra of T over τ is
defined as B(T ) := σ(τ).

· Finite measure: Measure µ on Ω is finite if µ(Ω) <∞.

· σ-finite measure: Ω can be covered by at most countably measurable sets in A with finite measure
with respect to µ.
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· Dirac measure: Let ω ∈ Ω, A a σ-algebra over Ω and A ∈ A, then

δω(A) := 1A(ω) :=

{
0, ω 6∈ A;
1, ω ∈ A

is called a Dirac measure on Ω.

· Semiring: H ⊆ 2Ω is called a semiring iff
1. ∅ ∈ H,
2. H is ∩-stable, i.e. A,B ∈ H ⇒ A ∩B ∈ H and
3. A,B ∈ H ⇒ ∃C1, . . . , Cn ∈ H pairwise disjoint with A \B = C1 ∪ . . . ∪ Cn .

Example: Ω = R,H = {(a, b] | a ≤ b}.

· Content: µ : H → [0,∞] such that µ(∅) = 0, µ finitely additive is called a content.

· Pre-measure: µ : H → [0,∞] such that µ is a content and µ is σ-additive is called a pre-measure.

1.2 Important Theorems in Measure Theory
Theorem 1.1 (Uniqueness theorem for measures)
Let (Ω,A) be a measure space, M ⊆ 2Ω ∩-stable with σ(M) = A and µ1, µ2 measures on (Ω,A)
with

µ1(B) = µ2(B) for all B ∈M .

If there is a sequence (Bn)n∈N in M with Bn ↑ Ω and µ1(Bn) <∞ for all n ∈ N, then µ1 = µ2.

Theorem 1.2 (Extension theorem for measures)
Let H ⊆ 2Ω be a semiring and µ : H → [0,∞] be a pre-measure, then there is a measure µ̃ on
(Ω, σ(H)) with

µ̃(A) = µ(A) for all A ∈ H .

If µ is σ-finite, then µ̃ is unique.

Definition 1.4 (Measure determining function)
A function G : R→ R is called measure determining if

1. G is increasing and

2. G is right continuous.

If G(−∞) = 0, G(∞) = 1, then G is called a distribution function.

Theorem 1.3 Let G be a measure determining function, then there exists a unique measure µG
on B(R) with

µ([a, b]) = G(b)−G(a) , for all a, b ∈ R with a ≤ b .

If G is a distribution function, µ is a probability measure.

Example 1.1 Let G(x) = x, then µG is called the Lebesgue measure on (R,B(R)).

Definition 1.5 (Measurable function) ▷ 10.10.2019
Let (Ω,A), (Ω′,A′) be measurable spaces. A function f : Ω→ Ω′ is called A-A′-measurable if

f−1(A′) ∈ A , for all A′ ∈ A′ .
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Remark 1.2 If the respective measure spaces referred to are clear by context, we also say f is
measurable.

Theorem 1.4 Let µ be a measure on Ω and f : Ω→ Ω′ be A-A′-measurable, then

µf (A′) := µ(f−1(A′))

determines a measure on (Ω′,A′). µf is called image measure of µ under f .

Remark 1.3 We write µf or µ ◦ f−1 for the image measure of µ under f .

Definition 1.6 (Random variable, Distribution)
If µ = P is a probability measure on (Ω,A), then a measurable function X : (Ω,A, µ)→ (Ω′,A′) is
called a random variable with values in Ω′. We call PX = P ◦X−1 the distribution of X.

Remark 1.4 To denote that ν is the distribution of a random variable X, we also write X ∼ ν. If
X,Y are random variables with equal distributions, then we write X d

= Y or X ∼ Y .

Important Facts about Measurable Functions

· Let (Ω,A), (Ω′,A′) be measurable spaces and f : Ω→ Ω′. If

A′ = σ(M′) and f−1(M′) ⊆ A ,

then f is A-A′-measurable.

· If additionally A′ is generated by a topology, one speaks about Borel measurability.

· If Ω′ = R = R ∪ {±∞} we have to consider the σ-algebra

B(R) = {B ∪ E | B ∈ B(R), E ⊆ {±∞}} .

1.3 Construction of an Integral for Measurable Functions
Definition 1.7 (Integral)
The integral is constructed in four steps. Let in the following (Ω,A, µ) be a measure space and
f : Ω→ R be A-B(R)-measurable.

1. If f = 1A for A ∈ A, then ∫
Ω

f dµ =

∫
Ω

1A dµ := µ(A) .

2. If instead f is a non-negative step function, i.e.

f ∈ E := {g : Ω→ R | g ≥ 0 is A-B(R)-measurable, |g(Ω)| <∞} ,

then there exist n ∈ N, α1, . . . , αn ∈ R≥0 and A1, . . . , An ∈ A such that

f =

n∑
i=1

αi1Ai .

In this case, we can define the integral of f with respect to µ as∫
Ω

f dµ :=

n∑
i=1

αi

∫
Ω

1Ai
dµ =

n∑
i=1

αiµ(Ai) .
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3. If instead f is a non-negative function, i.e. f(Ω) ⊆ [0,∞], then as shown by Lebesgue there
exists (un)n∈N ∈ E, such that un ↑ f pointwise convergent and we define∫

Ω

f dµ := lim
n→∞

∫
Ω

un dµ .

It can be shown that this definition is independent of the choice of sequence (un)n∈N.

4. Otherwise decompose f = f≥0 − f≤0, where

f≥0(ω) := max{f(ω), 0} and f≤0 := −min{f(ω), 0} .

We call f µ-integrable if ∫
Ω

f≥0 dµ <∞ and
∫
Ω

f≤0 dµ <∞ .

In that case, we define ∫
Ω

f dµ :=

∫
Ω

f≥0 dµ−
∫
Ω

f≤0 dµ .

Remark 1.5 If the respective space referred to is clear by context, we also write
∫
f dµ :=

∫
Ω
f dµ

and call it the µ-integral of f .

Corollary 1.4.1 (Properties of the integral)
Let f, g : Ω→ R be µ-integrable, then

1. for all a, b ∈ R, we have
∫
Ω
af + bg dµ = a

∫
Ω
f dµ+ b

∫
Ω
g dµ ,

2. from f ≤ g follows
∫
Ω
f dµ ≤

∫
Ω
g dµ and

3. |
∫
Ω
f dµ| ≤

∫
Ω
|f |dµ .

Definition 1.8 (Almost everywhere, Almost surely)
Let (Ω,A, µ) be a measure space and let Eω be a proposition for every ω ∈ Ω. We say E holds
µ-almost everywhere (µ-a.e.) if there exists N ∈ A with µ(N) = 0 and for all ω ∈ Ω \N we have
Eω . If µ = P is a probability measure, we say that E holds P-almost surely (P-a.s.).

Definition 1.9 (Lp space)
Let (Ω,A, µ) be a measure space and let p ∈ [1,∞). The space Lp(Ω,A, µ) consists of equivalence
classes of measurable functions f : (Ω,A, µ)→ (R,B(R)) with∫

Ω

|f |p dµ <∞ .

In this space, two measurable functions with the above properties are considered equivalent if they
are equal µ-almost everywhere.

Remark 1.6 With respect to the previous definition, we define a norm on Lp(Ω,A, µ) as

‖f‖p :=
(∫

Ω

|f |p dµ
) 1

p

.

Assuming instead that for f : (Ω,A, µ)→ (R,B(R)) measurable,

‖f‖∞ := sup

{
M ∈ [0,∞)

∣∣∣µ({ω ∈ Ω | |f(ω)| > M}) = 0

}
exists. We denote the set consisting of equivalence classes of functions fulfilling the previous property
which are equal µ-almost everywhere with L∞(Ω,A, µ).
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Definition 1.10 (Expectation of a random variable)
Let (Ω,A,P) be a probability space and X : Ω → R a random variable. We say the expectation of
X exists if X is P-integrable. In that case, we define the expectation of X as

E(X) :=

∫
Ω

X dP .

1.4 Important Integral Theorems
Theorem 1.5 Let (Ω,A, µ) be a measure space and f, g : Ω→ R be measurable with f = g µ-almost ▷ 15.10.2019
everywhere, then ∫

Ω

f dµ =

∫
Ω

g dµ .

Theorem 1.6 (Markov’s inequality)
Let (Ω,A, µ) be a measure space, f : Ω→ R≥0 be µ-integrable and t > 0, then

µ(f−1[t,∞)) ≤ 1

t

∫
Ω

f dµ .

Corollary 1.6.1 Let f : Ω→ R be µ-B(R)-measurable.

1. If f ≥ 0, then
∫
f dµ = 0⇔ f = 0 µ-almost everywhere.

2. If
∫
|f |dµ <∞, then |f | <∞ µ-almost everywhere.

Remark 1.7 The former can be formulated in probabilistic terms. If X is a random variable with
values in R, the following holds.

1. If X ≥ 0, then EX = 0⇔ X = 0 P-almost surely.

2. If E(|X|) <∞, then |X| <∞ P-almost surely.

Theorem 1.7 (Monotone convergence)
Let (Ω,A, µ) be a measure space and let f1, f2, . . . : Ω→ [0,∞] be a sequence of measurable functions.
If (fn)n∈N is also pointwise non-decreasing µ-almost everywhere, then the integral exists and∫

lim
n→∞

fn dµ = lim
n→∞

∫
fn dµ .

Theorem 1.8 (Fatou’s lemma)
Let (Ω,A, µ) be a measure space and let f1, f2, . . . : Ω→ [0,∞] be a sequence of measurable functions,
then ∫

lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
fn dµ .

Theorem 1.9 (Lebesgue dominated convergence theorem)
Let (Ω,A, µ) be a measure space and let f1, f2, . . . : Ω→ R be a sequence of measurable functions with
pointwise limn→∞ fn = f µ-almost everywhere. If there exists a µ-integrable function g : Ω→ [0,∞]
with

|fn| ≤ g, µ-almost everywhere, for all n ∈ N ,

then f is µ-integrable and ∫
f dµ = lim

n→∞

∫
fn dµ .
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The Principle of Measure Theoretic Induction

Let (Ω,A, µ) be a measure space. If the goal is to show that an integral property Ef holds for all
measurable functions f : Ω→ R, one may proceed as follows.

1. Prove that Ef holds for non-negative step functions, i.e. f ∈ E and in particular for indicators
1A, A ∈ A.

2. Use the Lebesgue monotone convergence theorem to show that Ef holds for all non-negative
measurable functions f .

3. Show that the property Ef holds for measurable functions f , by decomposing f = f≥0 − f≤0.

Theorem 1.10 (Integration w.r.t. image measures)
Let (Ω,A, µ) be a measure space, (Ω′,A′) a measurable space, f : Ω → Ω′ and h : Ω′ → R both
measurable. We observe the following properties.

1. If h ≥ 0, then ∫
Ω′
hdµf =

∫
Ω

h ◦ f dµ .

2. h is µf -integrable ⇔ h ◦ f is µ-integrable. The formula above holds as well.

1.5 Measures with Density
Definition 1.11 (Integration over subsets) ▷ 17.10.2019
Let f : Ω→ R be A-B(R)-measurable and f non-negative or µ-integrable. For A ∈ A, we define∫

A

f dµ :=

∫
Ω

f · 1A dµ

as the µ-integral of f over A.

Remark 1.8 One needs to show that the former is well-defined, by showing, that f · 1A is µ-
integrable.

Theorem 1.11 In the above situation if f ≥ 0 µ-almost everywhere,

A ∈ A 7−→ fµ(A) :=

∫
A

f dµ

defines a measure on (Ω,A).

Definition 1.12 (Measures with density)
We call fµ the measure with density f with respect to µ.

Remark 1.9 If Ω = Rk for some k ∈ N and µ is the Lebesgue measure, f is called Lebesgue density.

Theorem 1.12 (Uniqueness of densities)
Let (Ω,A, µ) be a measure space, f, g : Ω→ R measurable and f, g ≥ 0.

1. If f = g µ-almost everywhere, then fµ = gµ.

2. If f or g is µ-integrable, then the former holds in both directions.
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Theorem 1.13 Let (Ω,A, µ) be a measure space and fµ a measure with density.

1. If φ : Ω→ [0,∞] measurable, then∫
Ω

φdfµ =

∫
Ω

φ · f dµ .

2. If φ : Ω→ R is measurable, then

φ is fµ-integrable ⇐⇒ φ · f is µ-integrable .

If the latter holds, then the statement in 1. holds as well.

Definition 1.13 (Absolute continuity of measures)
Let (Ω,A) be a measurable space and µ, ν be associated measures. We say ν is absolutely continuous
with respect to µ if for all A ∈ A

µ(A) = 0 =⇒ ν(A) = 0

and we write ν � µ.

Theorem 1.14 (Radon-Nikodym)
Let (Ω,A) be a measurable space and µ, ν be associated measures. If µ is σ-finite, then

ν � µ ⇐⇒ ν has a density with respect toµ .

Remark 1.10

· σ-finiteness of µ is necessary for the existence of a density with respect to ν.

· The density is µ-almost everywhere uniquely determined. We denote it by dν
dµ .

· In the previous lecture we called a random variable continuous if PX � λ.

Definition 1.14 (Singular measures)
Let (Ω,A) be a measurable space and µ, ν be associated measures.
We say µ and ν are singular if there exists A ∈ A such that µ(A) = 0 and ν(Ω \ A) = 0. In this
case we write µ ⊥ ν.

Theorem 1.15 (Lebesgue decomposition)
Let µ and ν be measures on (Ω,A) with ν being σ-finite. Then there are uniquely determined
measures νa and νs with

νa � µ , νs ⊥ µ and νa + νs = ν .

Definition 1.15 (Product measure)
Let (Ωj ,Aj , µj)j=1,...,n be measure spaces. Define

Ω := Ω1 × . . .× Ωn and A :=

n⊗
j=1

Aj := σ ({A1 × . . .×An | Aj ∈ Aj}) .

We call a measure µ on (Ω,A) product measure if

µ(A1 × . . .×An) =
n∏
j=1

µj(Aj) , for all Aj ∈ Aj .
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Theorem 1.16 (Product measure)
In the former situation if (Ωj ,Aj , µj)j=1,...,n are σ-finite measure spaces, then the product measure
is unique.

Remark 1.11 We denote the product measure by µ =
⊗n

i=1 µi = µ1 ⊗ . . . ⊗ µn and call (Ω,A, µ)
the product of (Ωj ,Aj , µj)j=1,...,n.

Theorem 1.17 (Tonelli)
In the above situation, let (Ω1,A1, µ1), (Ω2,A2, µ2) be two σ-finite measure spaces and f : Ω →
[0,∞] be a measurable function, then∫

Ω

f d(µ1 ⊗ µ2) =

∫
Ω2

(∫
Ω1

f(ω1, ω2) dµ1(ω1)

)
dµ2(ω2)

=

∫
Ω1

(∫
Ω2

f(ω1, ω2) dµ2(ω2)

)
dµ1(ω1) .

Theorem 1.18 (Fubini)
In the above situation let (Ω1,A1, µ1), (Ω2,A2, µ2) be two σ-finite measure spaces and f : Ω → R
be µ1 ⊗ µ2-integrable, then

1. f(ω1, ·) is µ2-integrable for µ1-almost every ω1 ∈ Ω1,

2. f(·, ω2) is µ1-integrable for µ2-almost every ω2 ∈ Ω2,

3. the µ1-almost everywhere defined functions

ω1 7−→
∫
Ω2

f(ω1, ω2) dµ2(ω2)

is µ1-integrable,

4. the µ2-almost everywhere defined functions

ω2 7−→
∫
Ω1

f(ω1, ω2) dµ1(ω1)

is µ2-integrable and

5. ∫
Ω

f d(µ1 ⊗ µ2) =

∫
Ω2

(∫
Ω1

f(ω1, ω2) dµ1(ω1)

)
dµ2(ω2)

=

∫
Ω1

(∫
Ω2

f(ω1, ω2) dµ2(ω2)

)
dµ1(ω1) .
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2 Random Variables
2.1 Independence
Definition 2.1 (Independence) ▷ 22.10.2019
We consider a probability space (Ω,A,P) and let I be an arbitrary index set. In the following we
define three notions of independence.

1. Independence of sets Ai ∈ A with respect to P:

(Ai)i∈I ⊥⊥ :⇐⇒ ∀J ⊆ I, |J | <∞ : P(∩j∈JAj) =
∏
j∈J

P(Aj)

2. Independence of families of events Fi ⊆ A with respect to P:

(Fi)i∈I ⊥⊥ :⇐⇒ ∀J ⊆ I, |J | <∞ : P(∩j∈JAj) =
∏
j∈J

P(Aj) , ∀Aj ∈ Fj

3. Independence of random variables Xi : (Ω,A)→ (Ei, Ei) with respect to P:

(Xi)i∈I ⊥⊥ :⇐⇒
(
I(Xi) = X−1

i (Ei)
)
i∈I ⊥⊥

That is, the initial σ-algebras generated by (Xi)i∈I are independent with respect to P as families
of events.

Lemma 2.1 Consider a probability space (Ω,A,P), we have

(Ai)i∈I ∈ A ⊥⊥ ⇐⇒ (σ(Ai))i∈I ⊆ A ⊥⊥ ⇐⇒ (1Ai
)i∈I measurable ⊥⊥ .

Theorem 2.1 Consider a probability space (Ω,A,P), let (F)i∈I ⊆ A be ∩-stable, then

(Fi)i∈I ⊥⊥ ⇐⇒ (σ(Fi))i∈I ⊥⊥ .

Lemma 2.2 (1st block lemma)
Consider a probability space (Ω,A,P), let

Fi,k, ⊆ A , 1 ≤ k ≤ n(i) , 1 ≤ i ≤ m ∈ N ,

be independent ∩-stable families of events. Then the following σ-fields

Gi := σ(Fi,1 ∪ . . . ∪ Fi,n(i)) , 1 ≤ i ≤ m,

are independent.

Lemma 2.3 (2nd block lemma)
Let

Xi,k : (Ω,A,P)→ (E, E) , 1 ≤ k ≤ n(i) , 1 ≤ i ≤ m ∈ N ,

be independent random variables and fi : En(i) → R measurable functions. Then the random
variables

zi = fi(Xi1, . . . , Xin(i))

are independent.
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Theorem 2.2 Let X1, . . . , Xn : (Ω,A,P)→ (E, E) be random variables. Then the following state- ▷ 24.10.2019
ments are equivalent.

1. X1, . . . , Xn are independent.

2. P(X1 ∈ A1, . . . , Xn ∈ An) =
∏n
i=1 P(Xi ∈ Ai) , ∀A1, . . . , An ∈ E

3. P(X1,...,Xn) = PX1 ⊗ . . .⊗ PXn

(The joint distribution of the random vector is the product of its marginal distributions.)

Corollary 2.2.1 Let X,Y : (Ω,A,P) → Rd be independent random variables and h : R2d → R
measurable. If h ≥ 0 or if h(X,Y ) is P-integrable, then

Eh(X,Y ) =

∫ ∫
h(x, y)PX(dx)PY (dy)

= E
∫
h(x, Y )PX(dx)

= E
∫
h(X, y)Py(dy) .

Corollary 2.2.2 Let X,Y : Ω → Rd be independent random variables and f, g : Rd → R be
measurable functions such that f, g ≥ 0 or E|f(X)|,E|g(Y )| <∞, then

E(f(X) · g(Y )) = (Ef(X)) · (Eg(Y )) .

Corollary 2.2.3 Let X1, . . . , Xn : Ω→ Rd be independent random variables and f1, . . . , fn : Rd →
R measurable functions such that f1, . . . , fn ≥ 0 or E|fi(Xi)| <∞, for all i = 1, . . . , n, then

E
( n∏
i=1

fi(Xi)

)
=

n∏
i=1

E (fi(Xi)) .

Definition 2.2 (Convolution) ▷ 29.10.2019
Let µ, ν be probability measures on (Rd,B(Rd)). Then the following measure defines the convolution
of µ and ν

(µ ∗ ν)(B) :=

∫
Rd

∫
Rd

1B(x+ y)µ(dx)ν(dy) , B ∈ B(Rd) .

Theorem 2.3 Let X,Y : (Ω,A,P)→ (Rd,B(Rd)) be independent random variables, then

1. PX+Y = PX ∗ PY and

2. if PX � λd with density f and PY � λd with density g, then PX+Y � λd with density

h(z) =

∫
Rd

f(z − x) · g(x)λd(dx) , z ∈ Rd .

Remark 2.1 One can regard µ ∗ ν as the image measure of µ⊗ ν under the map (x, y) 7→ x+ y.

Definition 2.3 (Variance, Covariance, Uncorrelated)
Let X,Y : (Ω,A,P)→ (R,B(R)) be random variables and let X2, Y 2 be P-integrable. We define

1. the variance of X as V(X) := E
(
(X − EX)2

)
and

2. the covariance of X and Y as Cov(X,Y ) := E ((X − EX)(Y − EY )).

10



If Cov(X,Y ) = 0 we call X and Y uncorrelated.

Lemma 2.4 Let X,Y : (Ω,A,P)→ (R,B(R)) be random variables, let X2, Y 2 be P-integrable and
a, b ∈ R, then

1. V(X) = EX2 − (EX)2 ,

2. a 7→ E(X − a)2 is minimized for a = EX ,

3. V(aX + b) = a2V(X) ,

4. Cov(X,Y ) = E(XY )− EXEY and Cov(X,X) = V(X) ,

5. V(X + Y )− V(X − Y ) = 4Cov(X,Y ) and

6. V(X + Y ) = V(X) + V(Y )− 2Cov(X,Y ) .

Theorem 2.4 (Bianaymé’s identity)
Let X1, . . . , Xn : (Ω,A,P)→ (R,B(R)) be pairwise uncorrelated random variables and let X2

1 , . . . X
2
n

be P-integrable, then

V
( n∑
i=1

Xi

)
=

n∑
i=1

V (Xi) .

2.2 Construction of Independent Random Variables
Problem 1 Given a measurable space (E, E) and probability measure P, is there always a random ▷ 31.10.2019

variable X taking values in E and having distribution P ?

Problem 2 Given a measurable space (E, E) and probability measures P1,P2, are there always
random variables X ∼ P1, Y ∼ P2 taking values in E with X ⊥⊥ Y ?

Problem 3 Given (E, E) and probability measures (Pi)i∈I , where I is an arbitrary index set, are
there always random variables Xi ∼ Pi taking values in E with (Xi)i∈I ⊥⊥ ?

Solution to problem 1: Let (E, E ,P) be a measure space. Define a random variable

X : (E, E ,P)→ (E, E), ω 7−→ ω that is X := id .

It follows that PX = P ◦ id−1 = P.

Solution to problem 2: By applying the solution to problem 1, we can find probability spaces
(Ω1,A1,P1), (Ω2,A2,P2) and random variables

X : (Ω1,A1,P1)→ (E, E) with PX1 = P1 ,

Y : (Ω2,A2,P2)→ (E, E) with PY2 = P2 .

Define Ω := Ω1 × Ω2,A := A1 ⊗A2,P := P1 ⊗ P2 and new random variables

X̃ : (Ω,A,P)→ (E, E), ω = (ω1, ω2) 7→ X(ω1) ,

Ỹ : (Ω,A,P)→ (E, E), ω = (ω1, ω2) 7→ Y (ω2) .

They are well defined, i.e. measurable, as X,Y are measurable. To show independence and
by theorem 2.2 it is sufficient to prove that for B1, B2 ∈ E

P(X̃ ∈ B1, Ỹ ∈ B2) = P1 ⊗ P2({X̃ ∈ B1} ∩ {Ỹ ∈ B2}︸ ︷︷ ︸
={X∈B1}∩{Y ∈B2}

) = P1(X ∈ B1︸ ︷︷ ︸
={X∈B1}

)P2( Y ∈ B2︸ ︷︷ ︸
={Y ∈B2}

) .

Therefore PX̃ = PX1 , PỸ = PY2 and X̃ ⊥⊥ Ỹ .
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Definition 2.4 (Generalized product)
Let I 6= ∅ be an index set and (Ωi,A,Pi)i∈I probability spaces. For ∅ 6= K ⊆ I define

ΩK :=×
k∈K

Ωk :=

{
f : K →

⋃
k∈K

Ωk | f(k) ∈ Ωk , for all k ∈ K
}

as the generalized product of (Ωk)k∈K . Further we define

· the i-th coordinate of f ∈ ΩK as f(i), i ∈ K,

· the i-th coordinate projection πi : ΩI → Ωi, f 7→ f(i), i ∈ I,

· the restricted i-th coordinate projection πKi : ΩK → Ωi, f 7→ f(i), K ⊆ I, i ∈ K,

· the restriction to ΩK as πJK : ΩJ → ΩK , f 7→ f|K ,K ⊆ J , πK := πIK and

· the set of non-empty finite index subsets of I as κ := κ(I) := {K ⊆ I | 0 < |K| <∞}.

Definition 2.5 (Generalized product σ-field)
Let I 6= ∅ be an index set and let (Ωi,Ai)i∈I be measurable spaces, then

AI :=
⊗
i∈I
Ai := I ((πi)i∈I) ,

that is, the generalized product σ-field of (Ωi,Ai)i∈I is defined as the smallest σ-field on ΩI such
that all coordinate projections πi : ΩI → (Ωi,Ai) are measurable, i.e. their initial σ-algebra.

Remark 2.2 The projection maps πH : ΩI → ΩH ,H ∈ κ are AI-AH-measurable. It is possible to
verify using the generator of AH given by so called cylinder sets of the form⋂

i∈H
(πHi )−1(Ai) , Ai ∈ Ai for all i ∈ H .

Theorem 2.5 (Kolmogorov existence theorem)
Let I 6= ∅ be an index set and (Ωi,Ai,Pi)i∈I probability spaces. Then there exists a unique probability
measure

PI =
⊗
i∈I

Pi on (ΩI ,AI)

with the property that for all H ∈ κ

PI ◦ π−1
H = PπH

I =
⊗
i∈H

Pi .

That is, it exists a unique measure where every finite restriction has an image measure that is equal
to the finite product measure.

Definition 2.6 (Generalized product measure, Generalized Product)
The measure PI defined above is called the generalized product measure on (ΩI ,AI) and the measure
space (ΩI ,AI ,PI) is called the generalized product of (Ωi,Ai,Pi)i∈I .
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Corollary 2.5.1 Let I 6= ∅ be an index set and let Xi : (Ω,A,P) → (E, E), i ∈ I be random
variables, then

XI : (Ω,A) −→ (EI , EI), ω 7−→ (i 7→ Xi(ω))i∈I is measurable

and
(Xi)i∈I ⊥⊥ ⇐⇒ PXI =

⊗
i∈I

PXi ,

where PXI and
⊗

i∈I PXi are both measures on (EI , EI).

Solution to problem 3: Let I 6= ∅ be an index set, let (E, E) be a measure space and (Pi)i∈I corre-
sponding measures. For each j ∈ I define a random variable

Xj :

(
EI , EI ,

⊗
i∈I

Pi

)
−→ (E, E) , (ω : I → E) 7−→ ω(j) ,

which is equal the projection map πj . It exists with respect to its unique measure due to the
Kolmogorov existence theorem. To these we apply the previous corollary as follows.
As per the previous corollary define

XI : (EI , EI) −→ (EI , EI), (ω : I → E) 7−→ (j 7→ Xj(ω)) = (ω : I → E) ,

which is equal to the identity map. Therefore, clearly for all j ∈ I

PXj =

(⊗
i∈I

Pi

)
◦ π−1

j ◦ = Pj and PXI =

(⊗
i∈I

Pi

)
◦ idEI

=
⊗
i∈I

Pi =
⊗
i∈I

PXi .

That is, Xj ∼ Pj for all j ∈ I and (Xj)j∈I ⊥⊥ as they fulfill the right of the equality in the
previous corollary.

Lemma 2.5 (3rd block lemma) ▷ 05.11.2019
Let I 6= ∅ be an index set, let Xi : (Ω,A,P) −→ (Ωi,Ai), i ∈ I be independent random variables, let
I =

⋃
k∈K Ik be a partition of I and

fk :

(
×
i∈Ik

Ωi,
⊗
i∈Ik

A

)
−→ (Ek, Ek), k ∈ K

are measurable functions. Then (fk((Xi)i∈Ik))k∈K are independent.

2.3 0-1 laws
Lemma 2.6 (Borel-Cantelli lemma)
Let (Ω,A,P) be a probability space and (An)n∈N ∈ A, then

1.
∑∞
i=1 P(Ai) <∞ =⇒ P(lim supn→∞An) = 0 and

2. (An)n∈N are pairwise independent and
∑∞
i=1 P(Ai) =∞ =⇒ P(lim supn→∞An) = 1.

Definition 2.7 (Terminal σ-algebra)
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1. Let (Ω,A) a measurable space and (An)n∈N ⊆ A an a sequence of subsets. We define

τk ((An)n∈N) := σ

( ∞⋃
m=k

Am

)
.

We call

τ∞ ((An)n∈N) :=

∞⋂
k=1

τk ((An)n∈N)

the terminal σ-algebra associated with (An)n∈N.

2. If we are instead given measurable functions Xn : (Ω,A)→ (E, E), n ∈ N, we define

τk ((Xn)n∈N) := I ((Xm)∞m=k)

and call

τ∞ ((Xn)n∈N) :=

∞⋂
k=1

τk ((Xn)n∈N)

the terminal σ-algebra associated with (Xn)n∈N.

Remark 2.3 Setting An := X−1
n (E), n ∈ N, one could equivalently define τk((Xn)n∈N) := τk((An)n∈N).

Theorem 2.6 (Kolmogorov’s 0-1-law)
Let Xn : (Ω,A,P) → (E, E), n ∈ N be independent random variables and let τ∞((Xn)n∈N) be their
associated terminal σ-algebra, then

A ∈ τ∞ ((Xn)n∈N) =⇒ P(A) ∈ {0, 1} .

Corollary 2.6.1 (Borel’s 0-1-law)Let (Ω,A,P) be a probability space and let (An)n∈N ∈ A be
independent, then P(lim supn→∞An) ∈ {0, 1}.

Corollary 2.6.2 Let Xn : (Ω,A,P)→ (E, E), n ∈ N be independent random variables, let τ∞((Xn)n∈N)▷ 07.11.2019
be their associated terminal σ-algebra and let Y : Ω→ R be a τ∞((Xn)n∈N)-B(R)-measurable ran-
dom variable. Then Y is constant P-almost surely.

Definition 2.8 (Finite permutation, Symmetric event) ▷ 12.11.2019

· We call a map ψ : N → N such that {k ∈ N | ψ(k) 6= k} < ∞ a finite permutation and
Ψ := {ψ : N→ N | ψ is a finite permutation}.

· Let
Tψ : (EN, EN) −→ (EN, EN) , (xn)n∈N 7−→ (xψ(n))n∈N , ψ ∈ Ψ ,

we call an event A ∈ EN symmetric

:⇐⇒ Tψ(A) = A , ∀ψ ∈ Ψ

and Esym := {A ∈ EN | A symmetric}.

Lemma 2.7 Let (EN, EN) be a generalized product space, then the set of symmetric events Esym ⊆ EN ▷ 14.11.2019
is a σ-algebra over EN.
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Lemma 2.8 Let A1 ⊆ A2 ⊆ . . . be σ-fields over Ω, let A ∈ A := σ(
⋃∞
i=1Ai) and let P be a

probability measure on (Ω,A). Then, there exists Ai ∈ Ai,∀i ∈ N, such that

P((A \Ai) ∪ (Ai \A))
i→∞−−−→ 0 .

Theorem 2.7 (Hewitt-Savage 0-1-law)
Let Xn : (Ω,A,P) → (E, E), n ∈ N be a family independent and identically distributed random
variables and define

XN : (Ω,A,P) −→ (EN, EN) , ω 7−→ (Xn(ω))n∈N ,

with values in the associated generalized product. Then,

PXN(A) ∈ {0, 1} , ∀A ∈ Esym , where Esym ⊆ EN .

That is, symmetric events fulfill a 0-1-law with respect to the image measure of the random variables
(Xn)n∈N.

2.4 Strong Law of Large Numbers
Theorem 2.8 Let Xn : (Ω,A,P) → (R,B(R)), n ∈ N be independent and identically distributed
random variables with E|X1| =∞. Then for Sn := X1 + . . .+Xn, n ∈ N, we have

1. P(lim supn→∞{|Xn| ≥ n}) = 1 and

2. P({limn→∞
Sn

n exists and is finite}) = 0 .

Definition 2.9 (Almost sure convergence) ▷ 19.11.2019
Let Xn : (Ω,A,P)→ (R,B(R)), n ∈ N and X : (Ω,A,P)→ (R,B(R)) be random variables, we write

Xn
a.s.−−→ X :⇐⇒ lim

n→∞
Xn = X P-almost surely :⇐⇒ P

({
lim
n→∞

Xn = X
})

= 1

and say (Xn)n∈N converge P-almost surely to X.

Lemma 2.9 Let Xn : (Ω,A,P) → (R,B(R)), n ∈ N and X : (Ω,A,P) → (R,B(R)) be random
variables, then

Xn
a.s.−−→ X ⇐⇒ P

(
lim sup
n→∞

{|Xn −X| > ε}
)

= 0 , for all ε > 0 .

Lemma 2.10 (Cesàro’s lemma)
Let (an)n∈N ∈ (0,∞) such that an ↑ ∞ and let (vk)k∈N ∈ R be convergent with limk→∞ vk = v∞.
Then

lim
n→∞

1

an

n∑
k=1

(ak − ak−1)vk = v∞ , a0 := 0 .

Lemma 2.11 Let Xn : (Ω,A,P) → (R,B(R)), n ∈ N be independent and identically distributed
random variables with E|X1| <∞. Define

Yn := Xn · 1{|Xn|≤n} , Tn := Y1 + . . .+ Yn .

It follows, that

1. limn→∞ EYn = EX1 ,
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2. P(lim supn→∞{Xn 6= Yn}) = 0 ,

3.
∑∞
n=1

VYn

n2 ≤ 2E|X1| and

4.
∑∞
n=1

VT⌊αn⌋
⌊αn⌋2 ≤

2α
α−1E|X1| for all α > 1 .

Theorem 2.9 (Strong law of large numbers) ▷ 21.11.2019
Let Xn : (Ω,A,P) → (R,B(R)), n ∈ N be independent and identically distributed random variables
with E|X1| <∞. Then

X1 + . . .+Xn

n

a.s.−−→ EX1 .

Definition 2.10 (Empirical distribution function)
Let Xn : (Ω,A,P) → (R,B(R)), n ∈ N be independent and identically distributed random variables.
Define the empirical distribution function associated with (Xn)n∈N as

Fn(t) :=
1

n

n∑
i=1

1(−∞,t](Xi) , n ∈ N .

Corollary 2.9.1 (Glivenko-Cantelli theorem)
Let Xn : (Ω,A,P) → (R,B(R)), n ∈ N be independent and identically distributed random variables
with distribution function F and let Fn be the associated empirical distribution function. Then

lim
n→∞

sup
t∈R
|Fn(t)− F (t)| = 0 P-almost surely.
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3 Characteristic Functions
Definition 3.1 (Characteristic function) ▷ 26.11.2019
Let X : (Ω,A,P)→ (Rd,B(Rd)) be a random variable. We define

φX : Rd −→ C , t 7−→ E
(
ei⟨t,X⟩

)
as the characteristic function of the random variable X.

Theorem 3.1 Let G ∼ N (0, 1), then φG(t) = e−
t2

2 , t ∈ R.

Theorem 3.2 Let X : (Ω,A,P)→ (R,B(R)) be a random variable and a, b ∈ R. Then

φaX+b(t) = eitbφX(at) , t ∈ R .

Corollary 3.2.1 X ∼ N (µ, σ2) =⇒ φX(t) = eitµ−
σ2t2

2 , t ∈ R.

Theorem 3.3 (Properties of characteristic functions)
Let X : (Ω,A,P)→ (Rd,B(Rd)) be a random variable with characteristic function φX . Then

1. φX is uniformly continuous,

2. ‖φX‖∞ ≤ 1 ,

3. φ−X(t) = φX(−t) = φX(t) for all t ∈ Rd ,

4. t 7−→ ReφX(t) = E cos〈t,X〉 is the characteristic function of ε · X, where ε : (Ω,A,P) →
{−1, 1}, P(ε = ±1) = 1

2 and ε ⊥⊥ X ,

5. |φX(t)|2 is the characteristic function of X − X̃, where X, X̃ are idenpendent and identically
distributed,

6. let
TX = ΣX +m, Σ ∈ Rn×d and m ∈ Rn ,

it follows that
φTX

(t) = ei⟨t,m⟩ · φX(ΣTt) , t ∈ Rd ,

7. let d = 1 and E|X|n < ∞ for some n ∈ N, it follows that φX is n-times continuously
differentiable and

φ
(k)
X (0) = ik · EXk , for all k ∈ {0, . . . , n} and

8. let d = 1 , t1, . . . , tn ∈ R and Aφ := (aij)ij=1,...,n , where aij := φX(ti − tj), it follows that
Aφ is Hermitian and positive semidefinite.

Theorem 3.4 (Bodiner’s theorem) ▷ 28.11.2019
Let φ : R→ C, then the following statements are equivalent.

1. φ is the characteristic function of a R-valued random variable.

2. φ is continuous, φ(0) = 1 and Aφ := (aij)ij=1,...,n is positive semidefinite, where aij :=
φX(ti − tj), t1, . . . , tn ∈ R .
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Theorem 3.5 (Lévy’s theorem)
Let X : (Ω,A,P)→ (R,B(R)) be a random variable and [a, b] ⊂ R, then

1

2
P(X = a) +

1

2
P(X = b) + P(a < X < b) = lim

T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
φ(t) dt .

Corollary 3.5.1 Let X : (Ω1,A1,P1) → (R,B(R)) , Y : (Ω2,A2,P2) → (R,B(R)) be random
variables with φX = φY , then X

d
= Y .

Corollary 3.5.2 (Kac’s theorem)
Let X,Y : (Ω,A,P)→ (R,B(R)) be random variables, then

X ⊥⊥ Y ⇐⇒ φ(X,Y )(s, t) = φX(s)φY (t) , s, t ∈ R .

Theorem 3.6 (Lévy’s inequality)
Let X : (Ω,A,P)→ (Rd,B(Rd)) be a random variable and r > 0. Then

P
(

max
1≤k≤d

|Xk| ≥ r
)
≤ 7

(r
2

)d ∫ 1
r

− 1
r

· · ·
∫ 1

r

− 1
r

(1− ReφX(t)) dt1 . . . dtd .
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4 Convergence of Random Variables
Definition 4.1 (Modes of convergence) ▷ 03.12.2019
Let Xn : (Ωn,An,Pn)→ (R,B(R)), n ∈ N and X : (Ω,A,P)→ (R,B(R)) be random variables. We
define the following modes of convergence.

1. Convergence in distribution:

Xn
d−→ X :⇐⇒ ∀f ∈ Cb(R) : lim

n→∞
Ef(Xn) = Ef(X)

Let now Ω = Ω1 = . . . = Ωn , A = A1 = . . . = An and P = P1 = . . . = Pn .

2. Convergence almost surely:

Xn
a.s.−−→ X :⇐⇒ P({ω ∈ Ω | lim

n→∞
Xn(ω) = X(ω)}) = 1

3. Convergence in Lp/in pth mean, 1 < p ∈ R :

Xn
Lp

−−→ X :⇐⇒ X,Xn ∈ Lp and lim
n→∞

‖Xn −X‖p = 0

4. Convergence in probability:

Xn
P−→ X :⇐⇒ ∀ϵ > 0 : lim

n→∞
P(|Xn −X| > ϵ) = 0

Remark 4.1 For a real valued random variable Z, let ‖Z‖p := (E|Z|p)1/p , p ∈ N . Further, let
Cb(R) denote the set of continuous and bounded functions on R to R.

Lemma 4.1 (Uniqueness of limits)Let Xn : (Ωn,An,Pn)→ (R,B(R)), n ∈ N and X : (Ω,A,P)→
(R,B(R)), Y : (E, E ,W)→ (R,B(R)) be random variables. It follows that

1. Xn
d−→ X and Xn

d−→ Y =⇒ X
d
= Y .

Let now Ω = E = Ω1 = . . . = Ωn , A = E = A1 = . . . = An and P = W = P1 = . . . = Pn . Then

2. Xn
a.s.−−→ X and Xn

a.s.−−→ Y =⇒ X = Y P-almost surely,

3. Xn
P−→ X and Xn

P−→ Y =⇒ X = Y P-almost surely,

4. Xn
Lp

−−→ X and Xn
Lp

−−→ Y =⇒ X = Y P-almost surely.

Theorem 4.1 (Relating the modes of convergence)
Let Xn : (Ω,A,P) → (R,B(R)), n ∈ N and X : (Ω,A,P) → (R,B(R)) be random variables. It
follows that

1. Xn
P−→ X =⇒ Xn

d−→ X and f(Xn)
L1

−−→ f(X) , for all f ∈ Cb(R) ,

2. Xn
Lp

−−→ X for some p > 1 =⇒ Xn
L1

−−→ X ,

3. Xn
L1

−−→ X =⇒ Xn
P−→ X and

4. Xn
a.s.−−→ X =⇒ Xn

P−→ X .

19



Lemma 4.2 (Fast convergence) ▷ 05.12.2019
Let Xn : (Ω,A,P)→ (R,B(R)), n ∈ N and X : (Ω,A,P)→ (R,B(R)) be random variables. Assume
that Xn

P−→ X and there exist (εn)n∈N ∈ R , εn ↓ 0 such that

∞∑
n=1

P(|Xn −X| > εn) <∞ .

Then Xn
a.s.−−→ X .

Corollary 4.1.1 Let Xn : (Ω,A,P)→ (R,B(R)), n ∈ N and X : (Ω,A,P)→ (R,B(R)) be random
variables. Assume Xn

P−→ X then there is a monotone sequence (nk)k∈N ∈ N such that Xnk

a.s.−−→ X .

Lemma 4.3 Let Xn : (Ω,A,P) → (R,B(R)), n ∈ N and X : (Ω,A,P) → (R,B(R)) be random
variables, where X = b ∈ R P-almost surely. Then

Xn
P−→ X ⇐⇒ Xn

d−→ X .

Remark 4.2 In general, the implications in the below diagram can not be reversed, which can be
proved by finding counterexamples.

a.s. Lp, p > 1

L1

P

fast convergence

d

convergence to a constant

Figure 1: Hierarchy of modes of convergences

Theorem 4.2 Let Xn : (Ωn,An,Pn)→ (R,B(R)), n ∈ N and X : (Ω,A,P)→ (R,B(R)) be random ▷ 10.12.2019
variables, then

Xn
d−→ X ⇐⇒ FXn

(t)
n→∞−−−−→ FX(t)

for all continuity points t of FX , where FXn
, FX are the associated distribution functions.

Lemma 4.4 (Tightness)
Let Xn : (Ωn,An,Pn) → (Rd,B(Rd)), n ∈ N be random variables. Suppose that the sequence of
characteristic functions of (Xn)n∈N evaluated at t, (φXn

(t))n∈N, has a limit φ(t) for all t ∈ Rd.
Then

∀ε > 0 : ∃r(ε) : ∀R > r(ε) : sup
n∈N

P(‖Xn‖ > R) ≤ ε .
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Theorem 4.3 Let Xn : (Ωn,An,Pn)→ (Rd,B(Rd)), n ∈ N and
X : (Ω,A,P)→ (Rd,B(Rd)) be random variables. Then

Xn
d−→ X ⇐⇒ φXn

(t)
n→∞−−−−→ φX(t) for all t ∈ Rd .

Corollary 4.3.1 (Cramér-Wold theorem) ▷ 12.12.2019
Let Xn : (Ωn,An,Pn) → (Rd,B(Rd)), n ∈ N and X : (Ω,A,P) → (Rd,B(Rd)) be random variables.
Then

Xn
d−→ X ⇐⇒ 〈Xn, t〉

d−→ 〈X, t〉 for all t ∈ Rd .

Corollary 4.3.2 (Slutsky’s lemma)
Let Xn, Yn, X : (Ω,A,P) → (R,B(R)), n ∈ N be random variables with Xn

d−→ X, Xn − Yn
P−→ 0.

Then Yn
d−→ X.
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5 Central Limit Theorems
5.1 A Look at Several Central Limit Theorems
Definition 5.1 (Central limit theorem)
Let Xn : (Ω,A,P)→ (R,B(R)), n ∈ N be random variables and Sn := X1+ . . .+Xn . Then (Xn)n∈N
satisfies a central limit theorem

:⇐⇒ ∃(an)n∈N, (sn)n∈N ∈ R :
Sn − an
sn

d−→ G ∼ N (0, 1) . (CLT)

Theorem 5.1 Let Xn : (Ω,A,P)→ (R,B(R)) be independent and identically distributed, EX1 = 0,
VX1 = σ2 ∈ (0,∞) and Sn := X1 + · · ·+Xn. Then (Xn)n∈N satisfies a central limit theorem with
an = 0, sn = σ

√
n, n ∈ N , that is

Sn
σ
√
n

d−→ G ∼ N (0, 1) .

Theorem 5.2 (Lindeberg (1922) & Lévy (1925, 1937)) ▷ 17.12.2019
Let Xn : (Ω,A,P)→ (R,B(R)), n ∈ N be independent random variables. Assume EXn = 0,VXn =:
σ2
n ∈ (0,∞) and denote the distribution of Xn by µn . Define s2n := σ2

1 + · · ·+ σ2
n and suppose that

the Lindeberg condition

∀ε > 0 : lim
n→∞

1

s2n

n∑
k=1

∫
{|x|>εsk}

x2 µk(dx) = 0 (L)

holds. Let Sn := X1 + · · ·+Xn, then

Sn
sn

d−→ G ∼ N (0, 1) .

Remark 5.1 In the above setting one can consider the classical Lindeberg condition

∀ε > 0 : lim
n→∞

n∑
k=1

∫
{|x|>εsn}

x2 µk(dx) = 0 , (L’)

which is equivalent to the Lindeberg condition (L).

Lemma 5.1 (Feller (1935))
In the above setting the Lindeberg condition implies the Feller condition

lim
n→∞

max
1≤k≤n

σk
sn

= 0 . (F)

Corollary 5.2.1 (Lyapunov (1901)) ▷ 19.12.2019
Let Xn : (Ω,A,P)→ (R,B(R)), n ∈ N be independent random variables with EXn = 0,VXn =: σ2

n.
Define s2n := σ2

1 + · · ·+ σ2
n and suppose that the Lyapunov condition

∃δ > 0 : lim
n→∞

1

s2+δn

n∑
k=1

E|Xk|2+δ = 0 (LY)

holds, then (CLT) holds.
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(F) ∧ (CLT) (A) ∧ (CLT) (L)

(LY)

(CLT)

(L’)

(F)

Figure 2: Relations of limit conditions

Remark 5.2 (LY) is usually easier to check than (L), but it is stronger than (L). In practice (LY)
is checked with δ = 1.

Theorem 5.3 (Feller (1935))
Let Xn : (Ω,A,P) → (R,B(R)), n ∈ N be independent random variables with EXn = 0,VXn <
∞,∀n ∈ N. Then, (F) ∧ (CLT)⇔ (L).

Remark 5.3 The results remains valid for triangular arrays of random variables.

X1,1 X1,2 . . . X1,k(1)

X2,1 X2,2 . . . . . . X2,k(2)

...
...

. . .
Xn,1 Xn,2 . . . . . . . . . . . . Xn,k(n)

...
...

. . .

We assume independence within each line, but not of the lines. Roughly, there will be the following
correspondence.

classical triangular arrays

Xj ∼ µj Xn,j ∼ µn,j
Xj independent (Xn,j)j=1,...,k(n) independent

σ2
j = VXj σ2

n,j = VXn,j

s2n =
∑n
j=1 σ

2
j s2n =

∑k(n)
j=1 σ

2
n,j

Sn =
∑n
j=1Xj Sn =

∑k(n)
j=1 Xn,j

(L) ∨ (L’) ∀ε > 0 : 1
s2n

∑k(n)
j=1

∫
|Xj |>ε(sj∨sn) x

2µn,j(dx)→ 0

(F) max1≤j≤k(n)
σn,j

sn
→ 0

(A) ∀ε > 0 : max1≤j≤k(n) P(|Xn,j | > εsn)→ 0

(CLT) Sn−ESn

sn

d→
n→∞

G ∼ N (0, 1)
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Theorem 5.4 (Goncharov (1944)) ▷ 07.01.2020
Let Sn be the number of cycles of a uniform random permutation on n elements. Then

Sn − log n√
log n

d−→ G ∼ N (0, 1) .

5.2 Poisson Limit Theorem
Theorem 5.5 (Poisson limit theorem)
Let X1,n, . . . , Xn,n : (Ω,A,P)→ (R,B), n ∈ N be independent random variables such that

P(Xk,n = 1) = pk,n and P(Xk,n = 0) = 1− pk,n for all k, n ∈ N, 1 ≤ k ≤ n .

Suppose that max1≤k≤n pk,n
n→∞−−−−→ 0 and

∑n
k=1 pk,n

n→∞−−−−→ λ. Then

Sn = X1,n + · · ·+Xn,n
d−→ Z ∼ Po(λ) .

5.3 Weak Law of Large Numbers
Theorem 5.6 (Weak law of large numbers)
Let Xn : (Ω,A,P) → (R,B(R)), n ∈ R be independent and identically distributed random variables
with EX1 <∞, in the improper Riemann sense, and Sn := X1 + · · ·+Xn . Then Sn

n

P−→ EX1.

Remark 5.4 If additionally VXn < ∞ for all n ∈ N, the random variables (Xn)n∈N need not be
independent nor identically distributed, but only pairwise uncorrelated for

1

n

n∑
k=1

(Xk − EXk)
P−→ 0

to hold.
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6 Conditional Expectations
6.1 Construction and Elementary Properties
Definition 6.1 (Conditional expected value) ▷ 09.01.2020
Let X ∈ L1(Ω,A,P), F ∈ A with P(F ) > 0. We define the conditional expected value as

E(X | F ) :=
∫
X dPF .

Lemma 6.1 Let X ∈ L1(Ω,A,P), F ∈ A with P(F ) > 0. Then

E(X | F ) = E(X · 1F )
P(F )

.

Definition 6.2 (Conditional expectation)
Let X ∈ L1(Ω,A,P) and F ⊆ A be a σ-algebra over Ω. The conditional expectation of X with
respect to F is a F-measurable random variable XF : (Ω,F)→ (R,B(R)) for which either of

∀F ∈ F :

∫
F

X dP =

∫
F

XF dP|F ⇐⇒ E (X1F ) = E
(
XF

1F

)
(CE)

holds.

Remark 6.1 In the above situation, we will sometimes denote a random variable XF fulfilling
either condition (CE) as

E(X | F) := XF .

Further, if X = 1A for A ∈ A, then

P(A | F) := E(1A | F) = XF .

Theorem 6.1 (Existence & uniqueness of conditional expectations)
Let X ∈ L1(Ω,A,P) and F ⊆ A be a σ-algebra over Ω.

a) If XF , Y F : (Ω,F)→ (R,B(R)) satisfy

E[X1F ] = E[XF
1F ] = E[Y F

1F ] , ∀F ∈ F ,

then XF = Y F P-almost surely.

b) A random variable XF : (Ω,F)→ (R,B(R)) fulfilling (CE) exists.

Remark 6.2 When working with conditional expectations, we usually apply the following method. ▷ 14.01.2020

1. Check the defining equation (CE) to find a candidate for the conditional expectation.

2. Conclude by uniqueness, that this candidate is indeed the conditional expectation.

Theorem 6.2 Let X,Y ∈ L1(Ω,A,P), a, b, c ∈ R and let F ⊆ A be a σ-algebra over Ω. Then

1. X ≥ 0 ⇒ E (X | F) ≥ 0 ,

2. X ≡ c ⇒ E (X | F) ≡ c ,
3. F = {∅,Ω} ⇒ E (X | F) = EX ,

4. E (E (X | F)) = EX ,

5. E
(
a ·X + bẎ | F

)
= a · E (X | F) + b · E (Y | F) and

6. X ≥ Y ⇒ E (X | F) ≥ E (Y | F) .
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Theorem 6.3 (Convergence theorems)
Let X,Xn : (Ω,A,P)→ (R,B(R)), n ∈ N be random variables and F ⊆ A a σ-algebra over Ω.

· Conditional Fatou’s lemma: If Xn ≥ 0, Xn ∈ L1(Ω,A,P) for all n ∈ N and
lim infn→∞ EXn <∞, then P-almost surely

E
(
lim inf
n→∞

Xn | F
)
≤ lim inf

n→∞
E (Xn | F) .

· Conditional dominated convergence: If Xn
a.s.−−→ X and there is Y ∈ L1(Ω,A,P) such that for all

n ∈ N, we have |Xn| ≤ Y , then P-almost surely

lim
n→∞

E (Xn | F) = E
(
lim
n→∞

Xn | F
)
= E (X | F) .

· Conditional monotone convergence: If Xn ≥ 0, Xn ∈ L1(Ω,A,P) for all n ∈ N, Xn ↑ X and
supn∈N EXn <∞, then P-almost surely

E (Xn | F) ↑ E (X | F) .

· Conditional Jensen inequality: If φ : R → R convex and measurable and E|φ(X)| < ∞, then
almost surely

φ(E (X | F)) ≤ E (φ(X) | F) .

Theorem 6.4 Let X,Y, Z : (Ω,A,P) → (R,B(R)) be random variables, X ∈ L1(Ω,A,P) and
F ⊆ A a σ-algebra over Ω, then

1. pull-out: Z ∈ L∞(F ,P) ⇒ E (X · Z | F) = Z · E (X | F) ,
2. pull-out: Z F-mb, E|X · Z| <∞ ⇒ E (XZ | F) = Z · E (X | F) ,
3. tower: G ⊆ F ⊆ A σ-fields ⇒ E (E (X | F) | G) = E (X | G) ,
4. projection: X ∈ L2(Ω,A,P), Y ∈ L2(Ω,F ,P) ⇒

E(X | F) ∈ L2(Ω,A,P) , E
[
(X − E (X | F))2

]
≤ E

(
(X − Y )2

)
and

5. monotonicity: X ≤ Y ⇒ E (X | F) ≤ E (Y | F) .

Remark 6.3 In the above situation, there is a geometric meaning to (4.). L2(Ω,A,P) is a Hilbert
space, where 〈u, v〉 := E (uv) with L2(Ω,F ,P) being a linear subspace. Thus, as per (4.), E (X | F)
is the orthogonal projection of X onto L2(Ω,F ,P).

6.2 Conditional Expectation and Independence
Theorem 6.5 X,Y ∈ L1(Ω,A,P), F ,G σ-algebras over Ω and ▷ 16.01.2020
g : (R2,B(Rd))→ (R,B(R)) a bounded and measurable function. Then

1. I(X) ⊥⊥ F ⇒ E (X | F) = EX ,

2. I(X),G ⊥⊥ F ⇒ E (X | F ,G) = E (X | G) and
3. X ⊥⊥ Y and Y F-measurable ⇒ E (g(X,Y ) | F) = Eg(X, t)|t=Y .
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6.3 Conditioning on Random Variables
Remark 6.4 Let X : (Ω,A) → (E, E) be measurable and F ,G ⊆ A σ-algebras over Ω. We will
use abbreviations such as X ⊥⊥ F instead of I(X) ⊥⊥ F , and similarly X,G ⊥⊥ F instead of
σ(I(X) ∪ G) ⊥⊥ F .

Remark 6.5 Let X ∈ L1(Ω,A,P) and Y : (Ω,A) → (E, E) measurable. We use the abbreviation
E(X | Y ) := E(X | I(Y )).

Lemma 6.2 (Factorization Lemma)

Y : (Ω,A) mb.−−→ (Rd,B(Rd))

Z : (Ω, I(Y ))
mb.−−→ (R,B(R))

 =⇒ ∃ g : (Rd,B(Rd))→ (R,B(R)) measurable
such that Z = g(Y )

Definition 6.3 Let X ∈ L1(Ω,A,P) and Y : (Ω,A)→ (Rd,B(Rd)). Then we denote by

E [X | Y = y] := g(y) ∈ R←−p y ∈ Rd

the measurable function g : (Rd,B(Rd))→ (R,B(R)) that satisfies E (X | Y ) = g(Y ) by the previous
lemma.

Remark 6.6 In the discrete setting, that is imY is countable, we are able to evaluate the expression
as

E [X | Y = y] =

{
E(X1y(Y ))
P(Y=y) if P(Y = y) > 0

0 otherwise
.

What about the continuous setting (conditioning on events with probability 0)?

Definition 6.4 (Conditional density)
Let (X,Y ) : (Ω,A,P)→ (R2,B(R2)) be a random variable with an image measure that has a density
f(X,Y ) with respect to the Lebesgue measure on (R2,B(R2)). We define the conditional density of
X given Y as

fX|Y (x, y) :=

{
fX,Y (x,y)
fY (y) if fY (y) > 0

0 otherwise
, where x, y ∈ R .

Remark 6.7 Recall that in the setting of the previous definition, the following holds P-almost surely

fY (y) =

∫
R
f(X,Y )(x, y) dy , where y ∈ R .

Theorem 6.6 Let (X,Y ) : (Ω,A,P) → (R2,B(R2)) be a random variable with an image mea- ▷ 21.01.2020
sure that has a density f(X,Y ) with respect to the Lebesgue measure on (R2,B(R2)) and let h :
(R2,B(R2))→ (R,B(R)) be measurable such that E|h(X,Y )| <∞. Then

E[h(X,Y ) | Y = y] =

∫
R
h(x, y)fX|Y (x | y) dx , for PY -almost all y ∈ R .
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6.4 Introduction to Martingales
Definition 6.5 (Discrete stochastic process)
The family of random variables Xn : (Ω,A,P)→ (E, E), n ∈ N is called a stochastic process.

Definition 6.6 (Discrete filtration)
Let (Ω,A) be a measurable space. A sequence F1 ⊆ F2 ⊆ . . . of sub σ-fields of A over Ω is called a
filtration over (Ω,A) .

Definition 6.7 (Adapted process)
A stochastic process Xn : (Ω,A,P) → (E, E), n ∈ N is adapted to a filtration (Fn)n∈N over (Ω,A)
if for all n ∈ N, Xn is Fn-E-measurable.

Definition 6.8 (Discrete martingale)
Let (Ω,A,P) be a probability space and (Fn)n∈N a filtration over (Ω,A). The random variables
(Xn)n∈N are called a martingale with respect to (Fn)n∈N :⇐⇒

1. Xn ∈ L1(Ω,Fn,P) and

2. E (Xn+1 | Fn) = Xn P-almost surely for all n ∈ N .

Remark 6.8 In the above situation, if instead of (2.) only

E (Xn+1 | Fn) ≥ Xn P-almost surely for all n ∈ N

holds, then we refer to it as a submartingale and if only

E (Xn+1 | Fn) ≤ Xn P-almost surely for all n ∈ N

holds, we call it a supermartingale.

Definition 6.9 (Predictable process) ▷ 23.01.2020
A stochastic process Cn : (Ω,A,P)→ (E, E), n ∈ N≥2 is called predictable with respect to a filtration
(Fn)n∈N over (Ω,A) if Cn+1 is Fn-E-measurable for all n ∈ N .

Definition 6.10 (Martingale transform)
Let Xn : (Ω,A,P)→ (R,B(R)), n ∈ N be a martingale with respect to filtration (Fn)n∈N over (Ω,A)
and let Cn : (Ω,A,P) → (R,B(R)), n ∈ N≥2 be a predictable process with respect to (Fn)n∈N. We
define

(C ·X)n :=

n∑
k=1

Ck+1(Xk+1 −Xk)

and call ((C ·X)n)n∈N the martingale transform of (Xn)n∈N by (Cn)n∈N≥2
.

Lemma 6.3 For martingales (Xn)n∈N we have EXn = EX1 for all n ∈ N .

Theorem 6.7 Let Cn+1, Xn : (Ω,A,P)→ (R,B(R)), n ∈ N be stochastic processes, where (Cn)n∈N≥2

is predictable and (Xn)n∈N is a martingale with respect to a filtration (Fn)n∈N over (Ω,A). Then
((C ·X)n)n∈N is a martingale with respect to (Fn)n∈N with E(C ·X)n = 0 for all n ∈ N.
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6.5 Martingales and Stopping Times
Definition 6.11 (Stopping time)
Let (Fn)n∈N be a filtration over a probability space (Ω,A,P). A random variable τ : (Ω,A,P) →
(N≤∞, 2

N≤∞) such that
{τ ≤ n} ∈ Fn for all n ∈ N

is called a stopping time with respect to (Fn)n∈N.

Remark 6.9 In the above setting, τ is a stopping time ⇐⇒ {τ = n} ∈ Fn for all n ∈ N .

Definition 6.12 (Stopped process)
Let Xn : (Ω,A,P) → (E, E), n ∈ N be a process adapted to filtration (Fn)n∈N over (Ω,A) and let
τ : (Ω,A,P)→ (N≤∞, 2

N≤∞) be a stopping time with respect to (Fn)n∈N . We call

(Xτ
n)n∈N , where Xτ

n(ω) := Xmin{τ(ω),n}(ω) , for all ω ∈ Ω, n ∈ N

the process (Xn)n∈N stopped at time τ .

Theorem 6.8 (Elementary stopping theorem)
Let Xn : (Ω,A,P) → (R,B(R)) be a martingale with respect to (Fn)n∈N over (Ω,A) and τ :
(Ω,A,P) → (N≤∞, 2

N≤∞) be a stopping time with respect to (Fn)n∈N . Then the stopped process
(Xτ

n)n∈N is again a martingale with EXτ
n = EX1 for all n ∈ N.

Definition 6.13 (σ-algebra of the τ-past) ▷ 28.01.2020
Let τ : (Ω,A,P) → (N≤∞, 2

N≤∞) be a stopping time with respect to filtration (Fn)n∈N over (Ω,A).
We call

Aτ := {A ∈ A | A ∩ {τ ≤ n} ∈ Fn for all n ∈ N}
the σ-algebra of the τ -past.

Theorem 6.9 Let τ : (Ω,A,P) → (N≤∞, 2
≤∞) be P-almost surely finite and a stopping time with

respect to filtration (Fn)n∈N over (Ω,A). Let further Xn : (Ω,A,P) → (R,B(R)), n ∈ N be a
stochastic process adapted to (Fn)n∈N. Then the random variable

Xτ : Ω→ R , ω 7→ Xτ (ω) :=

{
Xτ(ω) , if τ(ω) <∞
0 , otherwise

is Aτ -B(R)-measurable.

Theorem 6.10 (Doob’s stopping theorem)
Let Xn : (Ω,A,P) → (R,B(R)) be a martingale with respect to (Fn)n∈N over (Ω,A) and τ :
(Ω,A,P)→ (N≤∞, 2

N≤∞) be a stopping time with respect to (Fn)n∈N . Then Xτ is P|Aτ
-integrable

and EXτ = EX0 if either of

1. τ is P-almost surely bounded,

2. τ is P-almost surely finite and (Xn)n∈N is P-almost surely bounded or

3. Eτ <∞ and (|Xn+1 −Xn|)n∈N is P-almost surely bounded

is satisfied.

Remark 6.10 If in the above situation (Xn)n∈N is only a supermartingale with respect to (Fn)n∈N
and (1.) - (3.) or

4. τ is P-almost surely finite and (Xn)n∈N is P-almost surely non-negative

then Xτ is P|Aτ
-integrable and instead EXτ ≤ EX0 .
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6.6 Martingales and Convergence
Definition 6.14 (Lp-boundedness)
Let (Xn)n∈N ∈ Lp(Ω,A,P) and let p ∈ [1,∞). We say

(Xn)n∈N is Lp-bounded :⇐⇒ ∃K ∈ R : ∀n ∈ N : ‖Xn‖p < K .

Lemma 6.4 (Upcrossing lemma) ▷ 30.01.2020
Let Xn : (Ω,A,P) → (R,B(R)), n ∈ N be a supermartingale with respect to filtration (Fn)n∈N over
(Ω,A) and let a, b ∈ R, a < b . Then

∀N ≥ 0 : (b− a)EUN [a, b] ≤ −Emin{(XN − a), 0} ,

where

UN [a, b] := max

{
k ∈ N0

∣∣∣ ∃0 ≤ s1 < t1 < s2 < t2 < · · · < sk < tk ≤ N ∈ N
s.t. Xsi < a and Xti > b, ∀i ∈ {1, . . . , k}

}
.

Lemma 6.5 Let (Xn)n∈N ∈ L1(Ω,A,P) be a L1-bounded supermartingale with respect to filtration
(Fn)n∈N over (Ω,A) . Then the monotone limit

U [a, b] := lim
N→∞

UN [a, b]

satisfies
(b− a)EU [a, b] ≤ |a|+ sup

n≥0
E|Xn| < ∞ .

In particular,
P(U [a, b] =∞) = 0 .

Theorem 6.11 (Doob’s martingale convergence theorem)
Let (Xn)n∈N ∈ L1(Ω,A,P) be a L1-bounded supermartingale with respect to filtration (Fn)n∈N over
(Ω,A) . Then a random variable X ∈ L1(Ω,A,P) exists such that Xn

a.s.−−→ X .

Remark 6.11 Let (Xn)n∈N ∈ L1(Ω,A,P) be any supermartingale with respect to filtration (Fn)n∈N
over (Ω,A) . If (Xn)n∈N non-negative P-almost surely then (Xn)n∈N is already L1-bounded.

Definition 6.15 Random variables Xn : (Ω,A,P) → (R,B(R)), n ∈ N are called P-uniformly
integrable if

∀ε > 0 : ∃K > 0 : E(1{|Xn|>K}|Xn|) ≤ ε , ∀n ∈ N .

Remark 6.12 In the above situation if (Xn)n∈N ∈ Lp(Ω,A,P) for some p > 1, they are P-
uniformly integrable as well.

Theorem 6.12 Let Xn : (Ω,A,P)→ (R,B(R)), n ∈ N be a P-uniformly integrable martingale with
respect to filtration (Fn)n∈N over (Ω,A). Then a random variable X ∈ L1(Ω,A,P) exists such that

Xn
a.s. & L1

−−−−−−→ X and ∀n ∈ N : E(X | Fn) = Xn P-almost surely .
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