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In the accompanying lecture, we developed the mathematical foundations of probabil-
ity theory. The topics of this course form the basis for all further lectures in probability
and statistics held at Ruhr-Universitdt Bochum. Prerequisites are the Introduction
to Probability and Statistics, Linear Algebra and Geometry I/II as well Analysis I-I11.
Since a particular focus has been on analytic methods, some basic knowledge in complex
analysis is helpful but not strictly required. Prior experience with measure theory is
also useful.
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1 A Crash Course in Measure Theory

1.1 Elementary Definitions in Measure Theory

Definition 1.1 (c-algebra, Measureable space) > 08.10.2019
Let Q # 0. AC 2% is called a o-algebra over ) if
1. Qe A,

2. Ac A= A° € A and
8. A, Ag,...e A= Uioi1Ai e A.
(Q, A) is called a measurable space.

Definition 1.2 (Measure, Measure space)
Let (2, A) be a measurable space, then a function p: A — [0,00] is called a measure on (2,.A) if

- (@) =0 and

- is o-additive, i.e. for all Ay, As, ... € A pairwise disjoint,
we have p(Ujeq Ai) = D goq 11(As)

We call (2, A, 1) a measure space.

Definition 1.3 (Probability measure, Probability space, Event)
If p is a measure on (2, A) with u(Q) = 1, we call it a probability measure, (2, A, 1) a probability
space and A € A an event.

Remark 1.1 We write P := p if u is a probability measure.

Further Concepts Related to Measures
- Generated o-algebra: Let M C 297 then

o(M) = ﬂ A
A o-algebra
MCA
is called the generated o-algebra of M over €.

- Initial o-algebra: Let I be an arbitrary index set and for i € I let f; : Q — €; be a function and
(€, A;) be a measurable space. We call

I((fi)ier) =0 (U f;l(A»)
iel
the initial o-algebra on € generated by (f;)icr-

- Borel o-algebra: Let (T, 7) be a topological space, then then then Borel o-algebra of T over 7 is
defined as B(T) := o(r).

- Finite measure: Measure p on € is finite if p(Q) < oco.

- o-finite measure: §) can be covered by at most countably measurable sets in A with finite measure
with respect to pu.



- Dirac measure: Let w € 1, A a o-algebra over ) and A € A, then

A.
S (A) = 1a(w) = {(1) : ZA’

is called a Dirac measure on 2.

- Semiring: H C 29 ig called a semiring iff
1. 0 e H,
2. H is N-stable, i.e. A, Be H= ANB & H and
3. A,BeH=3C,...,C, € H pairwise disjoint with A\ B=C,U...UC,.
Example: @ =R, H = {(a,b] | a < b}.

- Content: p: H — [0, 00] such that p(0) = 0, p finitely additive is called a content.

- Pre-measure: pn: H — [0,00] such that u is a content and p is o-additive is called a pre-measure.

1.2 Important Theorems in Measure Theory

Theorem 1.1 (Uniqueness theorem for measures)
Let (9, A) be a measure space, M C 29 N-stable with o(M) = A and p1, iz measures on (£, A)
with

w1 (B) = pe(B) for all B M.

If there is a sequence (Bp)nen in M with B, T Q and p1(By) < 0o for all n € N, then py = po.

Theorem 1.2 (Extension theorem for measures)
Let H C 2% be a semiring and p : H — [0,00] be a pre-measure, then there is a measure i on
(Q,0(H)) with

(A) = p(A) for all AeH.

If 1 is o-finite, then [i is unique.

Definition 1.4 (Measure determining function)
A function G : R — R is called measure determining if

1. G is increasing and
2. G is right continuous.
If G(—o0) = 0,G(00) = 1, then G is called a distribution function.

Theorem 1.3 Let G be a measure determining function, then there exists a unique measure g
on B(R) with
u([a,b]) = G(b) — G(a) , for all a,b € R with a <b.

If G is a distribution function, p is a probability measure.
Example 1.1 Let G(z) = z, then ug is called the Lebesgue measure on (R, B(R)).

Definition 1.5 (Measurable function)
Let (Q, A), (Y, A") be measurable spaces. A function f:Q — Q' is called A-A'-measurable if

fTHANY €A, forall A € A

> 10.10.2019



Remark 1.2 If the respective measure spaces referred to are clear by context, we also say f is
measurable.

Theorem 1.4 Let i be a measure on Q and f: Q — Q' be A-A’'-measurable, then
ul () 1= u(F1(A))

determines a measure on (', A"). u' is called image measure of j under f.

Remark 1.3 We write u! or po f~1 for the image measure of u under f.

Definition 1.6 (Random variable, Distribution)
If uw =P is a probability measure on (2, A), then a measurable function X : (Q, A, u) = (', A') is
called a random variable with values in Q. We call PX =P o X! the distribution of X.

Remark 1.4 To denote that v is the distribution of a random variable X, we also write X ~ v. If

X, Y are random variables with equal distributions, then we write X Y or X ~Y.

Important Facts about Measurable Functions

- Let (22, 4), (£, A") be measurable spaces and f: Q — Q. If
A =o(M')and f7HM') C A,
then f is A-A’-measurable.
- If additionally A’ is generated by a topology, one speaks about Borel measurability.
- If O’ = R = RU {£00} we have to consider the o-algebra

B(R)={BUE|Be€B(R),E C {toc}}.

1.3 Construction of an Integral for Measurable Functions

Definition 1.7 (Integral)
The integral is constructed in four steps. Let in the following (0, A, ) be a measure space and
f:Q — R be A-B(R)-measurable.

1. If f =14 for A€ A, then
/fdu:/lAdu::M(A).
Q Q

2. If instead f is a non-negative step function, i.e.
fe&={g:Q—=R|g>0is A-B(R)-measurable, |g()| < 0o},

then there exist n € N, aq,...,an € Rsg and Ay, ..., A, € A such that

f = Zai]lAi .
i=1

In this case, we can define the integral of f with respect to u as

[ran=>"a [ 1adu=3" a4y,
Q i=1 2 i=1



3. If instead f is a non-negative function, i.e. f(2) C [0,00], then as shown by Lebesque there
exists (un)nen € €, such that u, T f pointwise convergent and we define

/fdu = lim Uy dps .
Q n—oo Q

It can be shown that this definition is independent of the choice of sequence (un)nen-

4. Otherwise decompose f = f>o — f<o, where
f>o(w) :=max{f(w),0} and f<o:= —min{f(w),0}.
We call f p-integrable if

/fzodu<oo and /fgodu<oo.
Q Q

| raw= [ fodu= [ feodn.

Remark 1.5 If the respective space referred to is clear by context, we also write [ fdu = fQ fdp
and call it the p-integral of f.

In that case, we define

Corollary 1.4.1 (Properties of the integral)
Let f,g: Q — R be p-integrable, then

1. for all a,b € R, we have [, af +bgdu=a [, fdu+b [,gdp,
2. from f < g follows [, fdp < [ gdu and
3 | Jo fdul < [olfldp.

Definition 1.8 (Almost everywhere, Almost surely)

Let (2, A, 1) be a measure space and let E, be a proposition for every w € Q. We say E holds
p-almost everywhere (u-a.e.) if there exists N € A with u(N) = 0 and for all w € Q\ N we have
E, . If u =P is a probability measure, we say that E holds P-almost surely (P-a.s.).

Definition 1.9 (L? space)
Let (2, A, 1) be a measure space and let p € [1,00). The space LP (2, A, 1) consists of equivalence
classes of measurable functions f: (2, A, u) = (R, B(R)) with

[l an < .
Q

In this space, two measurable functions with the above properties are considered equivalent if they
are equal p-almost everywhere.

Remark 1.6 With respect to the previous definition, we define a norm on LP(Q, A, 1) as
%
11, = (L1 an)”
Q
Assuming instead that for f: (Q, A, n) = (R, B(R)) measurable,

11 2= sup {31 € [0.06) | u{w € @ | £w)] > M) =0}

exists. We denote the set consisting of equivalence classes of functions fulfilling the previous property
which are equal p-almost everywhere with L>=(Q, A, ).



Definition 1.10 (Expectation of a random variable)
Let (2, A,P) be a probability space and X : Q — R a random variable. We say the expectation of
X exists if X is P-integrable. In that case, we define the expectation of X as

E(X) ::/QXd]P’.

1.4 Important Integral Theorems

Theorem 1.5 Let (2, A, 1) be a measure space and f, g : 2 — R be measurable with f = g p-almost

everywhere, then
/ fdp= / gdp.
Q Q

Theorem 1.6 (Markov’s inequality)
Let (Q, A, 1) be a measure space, f: Q — Rxg be p-integrable and t > 0, then

p(F oo < 7 [ rau.

Corollary 1.6.1 Let f: Q — R be p-B(R)-measurable.
1. If f >0, then [ fdu=0<% f =0 p-almost everywhere.
2. If [1f]dp < oo, then |f] < co p-almost everywhere.

Remark 1.7 The former can be formulated in probabilistic terms. If X is a random variable with
values in R, the following holds.

1. If X >0, then EX =0< X =0 P-almost surely.
2. If E(|X|) < oo, then | X| < co P-almost surely.

Theorem 1.7 (Monotone convergence)
Let (Q, A, ) be a measure space and let fi, fa,...: Q — [0, 00] be a sequence of measurable functions.
If (fn)nen is also pointwise non-decreasing p-almost everywhere, then the integral exists and

/lim frndp = lim /fnd/,L.
n—oo n—oo

Theorem 1.8 (Fatou’s lemma)
Let (2, A, ) be a measure space and let fi, fa,...: Q@ — [0,00] be a sequence of measurable functions,
then

/lim inf f,, du < lim inf/fn dp .
n—oo n—oo
Theorem 1.9 (Lebesgue dominated convergence theorem)
Let (Q, A, i1) be a measure space and let f1, fa,...: Q — R be a sequence of measurable functions with
pointwise im,, o fr = [ p-almost everywhere. If there exists a p-integrable function g : Q — [0, o]
with

|frnl < g, p-almost everywhere, for alln € N,

/fdu:nli_{r;o/fndu.

then f is p-integrable and

> 15.10.2019



The Principle of Measure Theoretic Induction

Let (£, 4, 1) be a measure space. If the goal is to show that an integral property Ey holds for all
measurable functions f : Q — R, one may proceed as follows.

1. Prove that E; holds for non-negative step functions, i.e. f € £ and in particular for indicators
14,A€ A

2. Use the Lebesgue monotone convergence theorem to show that E; holds for all non-negative
measurable functions f.

3. Show that the property E; holds for measurable functions f, by decomposing f = f>0 — f<o.

Theorem 1.10 (Integration w.r.t. image measures) -
Let (2, A, 1) be a measure space, (2, A") a measurable space, f : Q& — Q' and h : Q' — R both
measurable. We observe the following properties.

1. If h >0, then
hduf:/hofdu.
Q Q

2. h is p-integrable < ho f is p-integrable. The formula above holds as well.

1.5 Measures with Density

Definition 1.11 (Integration over subsets)
Let f: 2 — R be A-B(R)-measurable and f non-negative or u-integrable. For A € A, we define

/Afdu::/gf-hdu

Remark 1.8 One needs to show that the former is well-defined, by showing, that f - 14 is p-
integrable.

as the p-integral of f over A.

Theorem 1.11 In the above situation if f > 0 p-almost everywhere,
A A futd) = [ fdu
A

defines a measure on (£, A).

Definition 1.12 (Measures with density)
We call fu the measure with density f with respect to p.

Remark 1.9 If Q = R* for some k € N and p is the Lebesque measure, fis called Lebesque density.

Theorem 1.12 (Uniqueness of densities)
Let (Q, A, 1) be a measure space, f,g:Q — R measurable and f,g > 0.

1. If f = g p-almost everywhere, then fu = gu.

2. If f or g is p-integrable, then the former holds in both directions.

> 17.10.2019



Theorem 1.13 Let (Q, A, p) be a measure space and fu a measure with density.
1. If ¢ : @ — [0, 00] measurable, then

/defu=/ﬂ<p-fdu-

2. If ¢ : Q — R is measurable, then
@ is fu-integrable <= ¢ - f is u-integrable.
If the latter holds, then the statement in 1. holds as well.

Definition 1.13 (Absolute continuity of measures)
Let (Q, A) be a measurable space and u,v be associated measures. We say v is absolutely continuous
with respect to p if for all A e A

wA)=0 = v(4) =0
and we write v < (.

Theorem 1.14 (Radon-Nikodym)
Let (Q,A) be a measurable space and i, v be associated measures. If p is o-finite, then

v L [t <= vhas a density with respect to .
Remark 1.10
- o-finiteness of p is necessary for the existence of a density with respect to v.

- The density is p-almost everywhere uniquely determined. We denote it by g—:.
- In the previous lecture we called a random variable continuous if PX < \.

Definition 1.14 (Singular measures)

Let (Q,.A) be a measurable space and i, v be associated measures.

We say p and v are singular if there exists A € A such that p(A) = 0 and v(Q\ A) = 0. In this
case we write p L v.

Theorem 1.15 (Lebesgue decomposition)
Let p and v be measures on (2, A) with v being o-finite. Then there are uniquely determined
measures v, and vs, with

Vo L by Vs Lpandvg +vs =v.

Definition 1.15 (Product measure)
Let (Q, Aj, ptj)j=1,...n be measure spaces. Define
Q=0 x ... xQ, and A:= Q) Aj =0 ({A1 x ... x A4y | A; € A;}) .
j=1

We call a measure u on (2, A) product measure if

p(Ar % ox Ay) = [ ri(4;), for all Aj € A;.
j=1



Theorem 1.16 (Product measure)
In the former situation if (0, Aj, pj)j=1
1S unique.

n are o-finite measure spaces, then the product measure

.....

Remark 1.11 We denote the product measure by p = ®?=1 Wi =p1 ® ... u, and call (Q, A, 1)
the product of (5, A, 14j)i=1,...n-

Theorem 1.17 (Tonelli)
In the above situation, let (1,41, p1), (Q2, A2, u2) be two o-finite measure spaces and f : Q —
[0,00] be a measurable function, then

/Qfd(m ® p2) = /92 < o f(w17w2)dﬂl(w1)) dpiz(w2)
~ [ (] srm) i) ) i

Theorem 1.18 (Fubini) -
In the above situation let (Q1, A1, p1), (Qo, Ao, o) be two o-finite measure spaces and f : Q@ — R
be 1 ® pa-integrable, then

1. f(wi,*) is po-integrable for pi-almost every wy €
2. f(-,we) is py-integrable for us-almost every wy € Qo,

3. the pi-almost everywhere defined functions

wy — fwi,ws2) dpae(ws)
Qo

is p-integrable,

4. the ps-almost everywhere defined functions

W2 flwr,wa) dpa (wr)
Q

is puo-integrable and

/Qfd(ul ® p2) = /Qz </91 f(wl,wz)dul(wl)) dpz(w2)
1

/Ql (/92 “’1’“2)01#2(002)) dpir (w1) .



2 Random Variables

2.1 Independence

Definition 2.1 (Independence) > 22.10.2019
We consider a probability space (Q, A,P) and let I be an arbitrary index set. In the following we
define three notions of independence.

1. Independence of sets A; € A with respect to P:

(Ai)jey L= VI C LT <oo: P(Njesd;) =[] P(A
jeJ

2. Independence of families of events F; C A with respect to P:

(Fi)ies L= VI C L || <oo: P(Njes4)) = [[P(4;), VA; € F
jedJ

3. Independence of random variables X; : (Q, A) — (E;, E;) with respect to P:

(Xi)jer L= (Z(X3) = X 1)), op L

el i

That is, the initial o-algebras generated by (X;)ier are independent with respect to P as families
of events.

Lemma 2.1 Consider a probability space (2, A, P), we have
(Ai)jer € ALL = (0(Ai));e; CA L <= (1a4,);c; measurable 1L .
Theorem 2.1 Consider a probability space (Q, A,P), let (F)ic; C A be N-stable, then
(Fi)

ier L= (0(F3))ser AL .

Lemma 2.2 (15¢ block lemma)
Consider a probability space (2, A, P), let

Fik, CA, 1<k <n(i), 1<i<meN,
be independent N-stable families of events. Then the following o-fields

Gi=0(Fi1U...UFnm), 1<i<m,
are independent.

Lemma 2.3 (279 block lemma)
Let
Xik: (QAP) = (EE), 1<k<n(i), 1<i<meN,

be independent random variables and f; : E™® — R measurable functions. Then the random
variables

R = fi(Xih s 7Xin(i))

are independent.



Theorem 2.2 Let Xy,..., X, : (QAP) — (E,&) be random variables. Then the following state-
ments are equivalent.

1. Xq,...,X, are independent.
2. P(Xl € A17...,Xn S An) = H?:lP(Xi c Ai); VAl,.. .,An e&

3. PXiXa) — pXi @ @ PXn

(The joint distribution of the random vector is the product of its marginal distributions.)

Corollary 2.2.1 Let X,Y : (Q, A,P) — R? be independent random variables and h : R?¢ — R
measurable. If h >0 or if h(X,Y) is P-integrable, then

Eh(X,Y) = / / h(z,y) PX (dz) PY (dy)
= / h(z,Y)PX (dx)
= IE/h(X7 y)PY(dy) .

Corollary 2.2.2 Let X,Y : Q — R? be independent random variables and f,g : R? — R be
measurable functions such that f,g >0 or E|f(X)|,E|g(Y)| < oo, then

E(f(X)-9(Y)) = (Ef(X)) - (Eg(Y)).

Corollary 2.2.3 Let X1,..., X, : Q = R? be independent random variables and f1,..., fn: R? —
R measurable functions such that f1,..., fn, >0 or E|fi(X;)| < oo, for alli=1,...,n, then

E(f{lmx») _ f[lmfi(m |

Definition 2.2 (Convolution)
Let p, v be probability measures on (R, B(R?)). Then the following measure defines the convolution
of w and v

(wen)(B)i= [ [ tateryudovy), BeBEY.
R JR
Theorem 2.3 Let X,Y : (Q, A,P) — (R B(R?)) be independent random variables, then
1. PXHY = PX 5« PY and

2. if PX < X with density f and PY < \? with density g, then PXTY < X with density

h(z) = g f(z—2)-g(x)\dx), 2R,

Remark 2.1 One can regard px v as the image measure of p ® v under the map (x,y) — x +y.

Definition 2.3 (Variance, Covariance, Uncorrelated)
Let X,Y : (2, A,P) — (R,B(R)) be random variables and let X2,Y? be P-integrable. We define

1. the variance of X as V(X):=E ((X — EX)?) and
2. the covariance of X and Y as Cov(X,Y) :=E((X —EX)(Y —EY)).

10
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If Cov(X,Y) =0 we call X and Y uncorrelated.

Lemma 2.4 Let X,Y : (Q, A, P) — (R, B(R)) be random variables, let X2, Y? be P-integrable and

a,b eR, then
1. V(X)) =EX? — (EX)?,
2. a E(X — a)? is minimized for a = EX ,
3. V(aX +b) = a®V(X),
4. Cov(X,Y) =E(XY) — EXEY and Cov(X,X) = V(X),
5. V(X+Y)-V(X -Y)=4Cov(X,Y) and
6. VIX+Y)=V(X)+V(¥)-2Cov(X,Y).

Theorem 2.4 (Bianaymé’s identity)
Let X1,..., X : (Q,A,P) — (R, B(R)) be pairwise uncorrelated random variables and let X%, ... X2

be P-integrable, then
V(in) =Y V(X)) .
i=1 i=1

2.2 Construction of Independent Random Variables

Problem 1 Given a measurable space (F, ) and probability measure P, is there always a random
variable X taking values in E and having distribution P ?

Problem 2 Given a measurable space (F,E) and probability measures Py, Py, are there always
random variables X ~ Py,Y ~ P, taking values in ' with X 1L Y'?

Problem 3 Given (E, ) and probability measures (P;);cr, where I is an arbitrary index set, are
there always random variables X; ~ P; taking values in E with (X;);e; 117

Solution to problem 1: Let (E,E,P) be a measure space. Define a random variable
X :(E,EP) = (B,E),w—w thatis X :=id.
It follows that PX =Poid™' =P.

Solution to problem 2: By applying the solution to problem 1, we can find probability spaces
(21, A1,P1), (Q2, A2, Py) and random variables

X (0, A1, Py) — (E,E) with PY =P,
Y (Qo, Ao, Py) — (E,E) with PY =P,.
Define Q := 0y x Q5,4 := A; ® Ay, P := P; ® Py and new random variables
X: (AP = (B E),w=(w,ws) — X(w1),
Y : (QQAP) = (E,€),w=(w1,ws) — Y(ws).

They are well defined, i.e. measurable, as X,Y are measurable. To show independence and
by theorem 2.2 it is sufficient to prove that for By, By € £

P(X € B1,Y € By)) =P, @P,({X € Bi}N{Y € B}) =Py (X € B, )Po(Y € By).
( 1 2) = P1 ®@Pa({ 1} No{ 2}) = Pi( 1 )Pa( 2)

={X€B1}N{Y€EBs} ={XeB:} ={Y€eB:}

Therefore PX = P, PY = PY and X 1L Y.

11
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Definition 2.4 (Generalized product)
Let I # 0 be an index set and (4, A, P;)icr probability spaces. For ) # K C I define

Qi = X Q= {f:K% U @ | f£(k) € ., forallkEK}
keK keK

as the generalized product of (Qi)kek . Further we define

- the i-th coordinate of f € Qi as f(i),i € K,

- the i-th coordinate projection m;: Qr — Qi f — f(i),i €1,

- the restricted i-th coordinate projection 7 : Qr — Q;, f — f(i), K C I,i € K,

- the restriction to Qx as 7TIJ( 2 Qy = Qr, f— f|K,K CJ, g = 7T§< and

- the set of non-empty finite index subsets of I as k:=r(I):={K CI|0< |K|< co}.

Definition 2.5 (Generalized product o-field)
Let I # 0 be an index set and let (§;, A;)icr be measurable spaces, then

Ap = ®A¢ =TI ((m)ier) »

icl

that is, the generalized product o-field of (£, A;)ics is defined as the smallest o-field on Q such
that all coordinate projections m; : Q — (4, A;) are measurable, i.e. their initial o-algebra.

Remark 2.2 The projection maps g : Qp — Qp, H € k are A;-Ag-measurable. It is possible to
verify using the generator of Ag given by so called cylinder sets of the form

NN A), A A forallie H.
icH
Theorem 2.5 (Kolmogorov existence theorem)

Let I # 0 be an index set and (2, A;, P;)icr probability spaces. Then there exists a unique probability
measure
P = ®]P’z‘ on (0, Ar)
il
with the property that for all H € Kk

—1 T
]P]Oﬂ'H :PIH :®]P)l
ieH
That is, it exists a unique measure where every finite restriction has an image measure that is equal

to the finite product measure.

Definition 2.6 (Generalized product measure, Generalized Product)
The measure P defined above is called the generalized product measure on (Qr, Ar) and the measure
space (Qr, A;,Pr) is called the generalized product of (Q;, Ai,P;)icr-

12



Corollary 2.5.1 Let I # () be an index set and let X; : (Q,A,P) — (E,&),i € I be random
variables, then

Xr: (QA) — (B, &), wr— (i — X;(w))ier s measurable

and
(Xi)ier L = P = ®PX1}
i€l

where PX1 and @, ; PX¢ are both measures on (Ey, ).

iel

Solution to problem 3: Let I # () be an index set, let (E,£) be a measure space and (P;);es corre-
sponding measures. For each j € I define a random variable

il

Xj: <E1,517®IE”¢> — (BE,&), (w:I— E)— w(j),

which is equal the projection map ;. It exists with respect to its unique measure due to the
Kolmogorov existence theorem. To these we apply the previous corollary as follows.

As per the previous corollary define
X (E],(c,’[) — (E],gj), (w I — E) — (] — XJ(W)) = (w I — E),
which is equal to the identity map. Therefore, clearly for all j € I
PXi = <®R> o#{lo =P, and PXr = <®]P’z> oidg, = ®]P>i = ®PX1'.
il icl icl icl

That is, X; ~ P, for all j € I and (Xj);er 1L as they fulfill the right of the equality in the
previous corollary.

Lemma 2.5 (3"¢ block lemma)
Let I # 0 be an index set, let X; : (Q, A, P) — (24, A;),1 € I be independent random variables, let
I =Uex Ir be a partition of I and

fk : <>< Qz7®A> — (Ek75k),k€ K
1€l i€l

are measurable functions. Then (fr((X;)ier,))kex are independent.

2.3 0-1 laws

Lemma 2.6 (Borel-Cantelli lemma)
Let (92, A, P) be a probability space and (An)nen € A, then

1. 3% P(4;) < 0 = P(limsup,,_,., A,) =0 and
2. (Ap)nen are pairwise independent and > ;> P(A4;) = co = P(limsup,,_,, 4,) = 1.

Definition 2.7 (Terminal o-algebra)

13
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1. Let (2, A) a measurable space and (A,)nen € A an a sequence of subsets. We define

Tk ((An)nGN) =0 ( U Am) .
m=k

We call -
Too (An)nen) = () 7 (An)nen)

k=1

the terminal o-algebra associated with (Ay)nen-

2. If we are instead given measurable functions X, : (Q,A) = (E,&),n € N, we define
and call

the terminal o-algebra associated with (X,,)neN-
Remark 2.3 Setting A, := X,;1(€),n € N, one could equivalently define 7i.((Xpn)nen) := Tk ((An)nen)-

Theorem 2.6 (Kolmogorov’s 0-1-law)
Let X, : (0, A,P) — (E,E),n € N be independent random variables and let Too ((Xy)nen) be their
associated terminal o-algebra, then

A € oo (Xn)nen) = P(A) € {0,1}.

Corollary 2.6.1 (Borel’s 0-1-law) Let (2, A,P) be a probability space and let (Ap)nen € A be
independent, then P(limsup,,_, ., A,) € {0,1}.

Corollary 2.6.2 Let X,, : (2, A,P) — (E,&),n € N be independent random variables, let Too (X7 )nen > 07.11.2019
be their associated terminal o-algebra and let Y : Q@ — R be a Too ((Xn)nen)-B(R)-measurable ran-
dom variable. Then 'Y is constant P-almost surely.

Definition 2.8 (Finite permutation, Symmetric event) > 12.11.2019

- We call a map ¥ : N — N such that {k € N | ¥(k) # k} < oo a finite permutation and
U :={¢: N—= N | is a finite permutation}.

- Let
Ty : (En,En) — (En,EN), (Tn)nen — (Zyn))nen, ¥ € W,

we call an event A € Ey symmetric
= Ty(A)=A, Y eU
and Egym = {A € En | A symmetric}.

Lemma 2.7 Let (En, &) be a generalized product space, then the set of symmetric events Eqym C En > 14.11.2019
is a o-algebra over Ey.

14



Lemma 2.8 Let Ay C Ay C ... be o-fields over Q, let A € A := o(J2, Ai) and let P be a
probability measure on (2, A). Then, there exists A; € A;,Vi € N, such that

P((A\ 4;) U (4;\ 4)) =20,

Theorem 2.7 (Hewitt-Savage 0-1-law)
Let X,, : (, A P) —» (E,€),n € N be a family independent and identically distributed random

variables and define
XN (Q,A, P) — (EN,gN), W (Xn(w))neN,

with values in the associated generalized product. Then,
PXv(A) € {0,1}, VA € Esym , where Egym C En .
That is, symmetric events fulfill a 0-1-law with respect to the image measure of the random variables
(Xn)neN'
2.4 Strong Law of Large Numbers

Theorem 2.8 Let X, : (2, A,P) = (R,B(R)),n € N be independent and identically distributed
random variables with E|X;| = co. Then for S, := X1 + ...+ X,,,n € N, we have

1. P(limsup,,_, .. {|Xn| > n}) =1 and
2. P({limy— o0 % exists and is finite}) = 0.

Definition 2.9 (Almost sure convergence) -
Let X,, - (, A, P) —» (R,B(R)),n € N and X : (Q, A, P) = (R,B(R)) be random variables, we write

Xn i—b—) X <= lim Xn = X P-almost surely =P ({ fim X" B X}> =1

n—oo n—oo

and say (Xp)nen converge P-almost surely to X.

Lemma 2.9 Let X,, : (2, 4,P) — (R,B(R)),n € N and X : (2, A P) - (R,B(R)) be random

variables, then

X, 2 X — P(limsup {1X, — X| >s}> =0, foralle >0.

n—oo

Lemma 2.10 (Cesaro’s lemma)

Let (an)nen € (0,00) such that a, 1 oo and let (vi)keny € R be convergent with limg_ o0 Vi = Voo

Then

n

lim — Z(ak —Ak—1)Vk = Voo, Gg :=0.
Lemma 2.11 Let X, : (2, A P) — (R,B(R)),n € N be independent and identically distributed
random variables with E|X1| < co. Define
Yo =X 1gx,<nys Tni=Y1+...+Y,.
It follows, that
1. lim, ., EY, = EX;
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2. P(limsup,, ,..{X, #Y,}) =0,
3.3 D < 9E|Xy| and

n=1 n?2

4. 300, ﬁiﬁff; < %E|X1| foralla>1.
Theorem 2.9 (Strong law of large numbers)
Let X,, : (2, A4,P) — (R,B(R)),n € N be independent and identically distributed random variables
with E|X;| < co. Then
X1+~-~+Xn a.s.
— =

EX;.

Definition 2.10 (Empirical distribution function)
Let X, : (A P) = (R,B(R)),n € N be independent and identically distributed random variables.
Define the empirical distribution function associated with (X, )nen as

1 n
Fot) =~ D Iceoy(Xi), neN.
i=1

Corollary 2.9.1 (Glivenko-Cantelli theorem)
Let X, : (2, A,P) —» (R,B(R)),n € N be independent and identically distributed random variables
with distribution function F and let F, be the associated empirical distribution function. Then

lim sup|F,(t) — F(t)] =0 P-almost surely.

n—oo teR
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3 Characteristic Functions

Definition 3.1 (Characteristic function) > 26.11.2019
Let X : (Q,A,P) — (R, B(R?)) be a random variable. We define

ox R —C,t—E (e“t’X))

as the characteristic function of the random variable X .

Theorem 3.1 Let G ~ N(0,1), then ¢a(t) = e 7,1 € R.

Theorem 3.2 Let X : (2, A,P) — (R,B(R)) be a random variable and a,b € R. Then
axib(t) = ™oy (at), t €R.

a2t2

Corollary 3.2.1 X ~ N (u,0%) = ¢x(t) =€ "2t eR.

Theorem 3.3 (Properties of characteristic functions)
Let X : (2, A,P) — (R4, B(RY)) be a random variable with characteristic function px. Then

1. px is uniformly continuous,
2. H‘)OX”oo <1,
3. p_x(t) = px(—t) = px(t) for allt € R,

4. t —> Repx(t) = Ecos(t,X) is the characteristic function of € - X, where ¢ : (Q, A, P) —
{-1,1}, Ple=+1)=1 and e 1 X,

5. |px (t)? is the characteristic function of X — X, where X, X are idenpendent and identically
distributed,

6. let
Tx =%X +m, ¥ e R and m e R",

it follows that '
ory (t) = eiltm) . ox(BTt), t e R,

7. let d = 1 and E|X|" < oo for some n € N, it follows that ¢x is n-times continuously
differentiable and
cpg?)(O) =i* EX*, forallk € {0,...,n} and

8. letd=1,ty,...,t, € R and Ay = (a;j)ij=1,....n , where a;; := @x(t; —t;), it follows that
A, is Hermitian and positive semidefinite.

Theorem 3.4 (Bodiner’s theorem) > 28.11.2019
Let ¢ : R — C, then the following statements are equivalent.

1. ¢ is the characteristic function of a R-valued random variable.

2. ¢ is continuous, p(0) = 1 and A, := (aij)ij=1,...n 1S positive semidefinite, where a;; =
(px(ti—tj), t1,...,tn cR.
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Theorem 3.5 (Lévy’s theorem)
Let X : (Q, A P) = (R, B(R)) be a random variable and [a,b] C R, then

Ip(x —a)+ LP(X = 1) + Pla < X < b) = lim 1/TM (1) dt
g T EA = =T TR A

Corollary 3.5.1 Let X : (01,A41,P1) — (R,B(R)), YV : (23,42, P2) — (R,B(R)) be random
variables with px = py, then X iy,

Corollary 3.5.2 (Kac’s theorem)
Let X, Y : (Q, A, P) = (R, B(R)) be random variables, then

X ILY <= oxy)(st)=px(s)py(t), s,t €R.

Theorem 3.6 (Lévy’s inequality)
Let X : (Q,A,P) — (R% B(RY)) be a random variable and r > 0. Then

1 1
r d T 3
P(lgl%m >r> §7<§) /_7/_ (1 - Repx(t)dt;...dtg.

1
s
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4 Convergence of Random Variables
Definition 4.1 (Modes of convergence) > 03.12.2019

Let Xy, 0 (Qn, An,Pp) = (R,B(R)),n € N and X : (2, A,P) — (R,B(R)) be random variables. We
define the following modes of convergence.

1. Conwvergence in distribution:

X, S X = VfeC(R): lim Ef(X,,) = Ef(X)

Letnow Q=0 =..=Q,, A=A1=...=A, and P=P,=... =P,.
2. Convergence almost surely:

X, 2 X = PHwe Q] lim X,(w) =X(w)}) =1

n—oo
3. Convergence in L /in p* mean, 1 <p € R:

X, 2 X = X, X, €LP and lim | X, — X[, =0
n—roo

4. Convergence in probability:

X, 5 X = VYe>0: lim P(|X,, — X| >¢)=0
n—oo

Remark 4.1 For a real valued random variadle Z, let | Z||,, := (E|Z|P)? | p € N. Further, let
Cp(R) denote the set of continuous and bounded functions on R to R.

Lemma 4.1 (Uniqueness of limits) Let X, : (Q,, A4,,P,) = (R,B(R)),n € Nand X : (Q, A, P) —
(R,B(R)), Y : (E,&E,W) = (R,B(R)) be random variables. It follows that

L X S XadX, Sy = X2y,
Letnow Q=FE=01=..=Q,, A=€=A41=...=A, and P=W=P,=...=P,. Then

2. X, 25 X and X, 225Y = X =Y P-almost surely,

3. X, l X and X, 3 Y = X =Y P-almost surely,

4. Xn L—p> X and X, i Y = X =Y P-almost surely.
Theorem 4.1 (Relating the modes of convergence)
Let X, : (Q,AP) - (R,B(R)),n € N and X : (U AP) = (R,B(R)) be random variables. It
follows that

1
1L X, 5 X = X, 5 X and f(X,,) L5 f(X), for all f € Cy(R),
2. XnL—p>Xf0rsomep>1 = XnL—1>X,
Lt P
3 X, — X = X, —» X and

4o Xy 2 X = X, 5 X.
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Lemma 4.2 (Fast convergence)
Let X, : (2, A,P) — (R,B(R)),n € N and X : (2, A,P) = (R, B(R)) be random variables. Assume

that X,, Py X and there exist (en)neny € R, &, | 0 such that
D P(Xn - X| > ) < 00.
n=1

Then X,, =25 X .

Corollary 4.1.1 Let X, : (2, 4,P) = (R,B(R)),n € N and X : (Q, A, P) = (R,B(R)) be random
variables. Assume X,, £> X then there is a monotone sequence (ny)ren € N such that X, 25X

Lemma 4.3 Let X, : (,AP) - (R,BR)),n € N and X : (2, AP) - (R,B(R)) be random
variables, where X = b € R P-almost surely. Then

X, 5x — x,% x.

Remark 4.2 In general, the implications in the below diagram can not be reversed, which can be

proved by finding counterexamples.
LP, p > 1
fast convergence

Figure 1: Hierarchy of modes of convergences

Theorem 4.2 Let X,, : (2, Ap,Pr) = (R, B(R)),n € N and X : (Q, A,P) — (R, B(R)) be random

variables, then
n—oo

X, 5 X — Fx, (t) 22 Fx(t)

for all continuity points t of Fx, where Fx, ,Fx are the associated distribution functions.

Lemma 4.4 (Tightness)

Let X, @ (Q, An,Pn) — (R, B(RY)),n € N be random variables. Suppose that the sequence of
characteristic functions of (X, )nen evaluated at t, (ox, (t))nen, has a limit @(t) for all t € R
Then

Ve >0:3r(e) : VR > r(e) : sup P(|| Xp|| > R) <¢
neN
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Theorem 4.3 Let X,, : (2, A, P,) — (R4, B(R?)),n € N and
X : (Q,A,P) — (RY B(R?)) be random variables. Then

X, 5 X = ox, (t) 2225 px(t) for allt € RY.

Corollary 4.3.1 (Cramér-Wold theorem)

Let Xy 0 (Qn, An,Pn) — (RY, B(RY)),n € N and X : (Q,A,P) — (RY B(R?)) be random variables.

Then
X, 5 X = (Xn,t) 4 (X,t) for allt € R,

Corollary 4.3.2 (Slutsky’s lemma)
P

Let X,,,Y,, X : (Q,AP) —» (R,B(R)),n € N be random variables with X, LX, X,-Y, 5o.

ThenY, & X.
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Central Limit Theorems

5.1 A Look at Several Central Limit Theorems

Definition 5.1 (Central limit theorem)
Let X, : (0, AP) = (R,B(R)),n € N be random variables and S, :== X1+...+X,, . Then (X,,)nen
satisfies a central limit theorem

S —Gp d

r= 3(an)nen, (5n)nen € R : 9 G~ N(0,1). (CLT)

Sn
Theorem 5.1 Let X,, : (2, A,P) = (R, B(R)) be independent and identically distributed, EX;, = 0,
VX, =02¢€(0,00) and S,, := X1 + -+ + X,,. Then (X,)nen satisfies a central limit theorem with
an, =0,8, =0v/n,n € N, that is
Sn
o

Theorem 5.2 (Lindeberg (1922) & Lévy (1925, 1937))

Let X, : (2, A,P) — (R,B(R)),n € N be independent random variables. Assume EX,, =0,VX,, =
02 € (0,00) and denote the distribution of X,, by i, . Define s2 := 0% + -+ 02 and suppose that
the Lindeberg condition

4G ~N(,1).

Ve >0: lim ZZ/ 2% i (dz) = 0 (L)

n—oo § {|z|>esk}

holds. Let S, :== X1 +---+ X,,, then

ﬁim;wv(o,n.

Sn

Remark 5.1 In the above setting one can consider the classical Lindeberg condition

Ve >0: lim Z/ 22 g (dz) =0, (L)
n—00 {|lz|>esn}

which is equivalent to the Lindeberg condition (L).

Lemma 5.1 (Feller (1935))
In the above setting the Lindeberg condition implies the Feller condition

. Ok
lim max — =0. (F)
n—oo 1<k<n S,

Corollary 5.2.1 (Lyapunov (1901))
Let X, : (2, A,P) = (R,B(R)),n € N be independent random variables with EX,, = 0,VX,, =: 02.
Define s% := o2 + -+ + 02 and suppose that the Lyapunov condition

1
30> 0: lim MZE|X 2+ =0 (LY)
Sno k2

holds, then (CLT) holds.
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(LY)

Figure 2: Relations of limit conditions

Remark 5.2 (LY) is usually easier to check than (L), but it is stronger than (L). In practice (LY)
is checked with § = 1.

Theorem 5.3 (Feller (1935))
Let X, : (2, A,P) - (R,B(R)),n € N be independent random variables with EX,, = 0,VX,, <
00,Vn € N. Then, (F) A (CLT) < (L).

Remark 5.3 The results remains valid for triangular arrays of random variables.

Xi1 X1z oo X
X271 X272 X2,k(2)
Xpr Xoz oo .l o Xk

We assume independence within each line, but not of the lines. Roughly, there will be the following
correspondence.

classical triangular arrays
Xj ~ 1 Xn,j ~ inj
X, independent (Xn.,j)j=1,....k(n) independent
0% = VX; ol ;i =VX, ;
Sh=127-10; s2 =310 02,
Sn=2211%; S =300 X
L)V L) [ Ve>0: M o) Pn(dz) = 0
(F) MAaxX) < j<k(n) U;TJ —0
(A) Ve > 0 : maxy<j<p(n) P(| Xn,j| > esn) = 0
(CLT) Su=ES, ni@ G~ N(0,1)
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Theorem 5.4 (Goncharov (1944)) > 07.01.2020
Let S,, be the number of cycles of a uniform random permutation on n elements. Then

S, —logn q
——— 5 G ~N(0,1).
Vlogn - (0.1)

5.2 Poisson Limit Theorem

Theorem 5.5 (Poisson limit theorem)
Let X1y s Xnm t (A P) = (R,B),n € N be independent random variables such that

P(Xgn=1)=pgn and P(Xyn,=0)=1—pr, forallk,neN1<k<n.
Suppose that maxi<g<n Pk.n 27 0 and Zzzl Pk,n 222 N\, Then

Sp=Xin+ +XonSZ~Po()).

5.3 Weak Law of Large Numbers

Theorem 5.6 (Weak law of large numbers)
Let X, : (2, A,P) = (R,B(R)),n € R be independent and identically distributed random variables

with EX, < 0o, in the improper Riemann sense, and S, := X1 +---+ X, . Then 57“ L EX;.

Remark 5.4 If additionally VX, < oo for all n € N, the random variables (X, )nen need not be
independent nor identically distributed, but only pairwise uncorrelated for

1 n
- S (X —EXp) 50
k=1

to hold.
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6 Conditional Expectations

6.1 Construction and Elementary Properties

Definition 6.1 (Conditional expected value)
Let X € LY(Q, A,P), F € A with P(F) > 0. We define the conditional ezpected value as

E(X | F) ::/Xd]P’F.

Lemma 6.1 Let X € LY(Q, A,P), F € A with P(F) > 0. Then

E(X-1p)

E(X | F) = =5

Definition 6.2 (Conditional expectation)
Let X € LY, A,P) and F C A be a o-algebra over Q. The conditional expectation of X with
respect to F is a F-measurable random variable X7 : (Q,F) — (R, B(R)) for which either of

VFG]::/XdIP:/deIP"; — E(X1p) =E(X71p) (CE)
F F

holds.

Remark 6.1 In the above situation, we will sometimes denote a random variable X7 fulfilling
either condition (CE) as
E(X | F):=X7T.

Further, if X =14 for A€ A, then
P(A|F):=E(ls|F)=X".

Theorem 6.1 (Existence & uniqueness of conditional expectations)
Let X € LY(Q, A,P) and F C A be a o-algebra over (.

a) If X7 YT 1 (Q,F) = (R,B(R)) satisfy
E[X1r] =E[XT1p] = E[YT1x], VF € F,
then X* = Y7 P-almost surely.
b) A random variable X7 : (Q,F) = (R, B(R)) fulfilling (CE) exists.
Remark 6.2 When working with conditional expectations, we usually apply the following method.
1. Check the defining equation (CE) to find a candidate for the conditional expectation.

2. Conclude by uniqueness, that this candidate is indeed the conditional expectation.

Theorem 6.2 Let X,Y € L'(Q, A,P), a,b,c € R and let F C A be a o-algebra over Q. Then

X>0 =~ E(X|F) >0,
X=c = E(X|F)=c,
F={0,Q} = E(X|F)=EX,

EEX|F)=EX,
E(a.x+bY|f):a.E(X|f)+b-E(Y|f) and
X>Y = E(X|F)2EY|F).

I el
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Theorem 6.3 (Convergence theorems)
Let X, X, : (2, A,P) = (R,B(R)),n € N be random variables and F C A a o-algebra over .

- Conditional Fatou’s lemma: If X,, >0, X,, € L*(Q, A,P) for alln € N and
liminf, . EX, < oo, then P-almost surely

E (hm inf X, | ]-") < liminfE (X, | F) .
n— oo

n—oo

- Conditional dominated convergence: If X,, 2>+ X and there is Y € L*(Q, A, P) such that for all
n € N, we have | X, | <Y, then P-almost surely

1imE(Xn|f)=E(1Lm Xn|]-">:E(X|]-").

n—roo

- Conditional monotone convergence: If X, > 0,X, € LY (Q,AP) for alln € N, X,, + X and
sup, ey EX, < oo, then P-almost surely

E(X, | F)1E(X|F).

- Conditional Jensen inequality: If ¢ : R — R conver and measurable and Elp(X)| < oo, then

almost surely
P(E(X | F)) <E(p(X) | F) .

Theorem 6.4 Let X,Y,Z : (Q,AP) — (R,B(R)) be random variables, X € L'(Q, A,P) and
F C A a o-algebra over §2, then

1 pull-out: Z € L*(F,P) = EX-Z|F)=Z-E(X|F),
2 pull-out: Z F-mb, E|X - Z| < oo = E(XZ|F)=Z E(X|F),
3. tower: G C F C A o-fields = EEX|F)IG=EX]|G),
4. projection: X € L*(Q, A,P), Y € L*(Q, F,P) =

E(X | F) € L*(Q,AP), E[(X ~E(X | F)}’| <E((X - Y)?) and
5. monotonicity: X <Y = EX|F)<EY|F).

Remark 6.3 In the above situation, there is a geometric meaning to (4.). L?(Q2, A,P) is a Hilbert
space, where {u,v) := E (uv) with L*(Q, F,P) being a linear subspace. Thus, as per (4.), E(X | F)
is the orthogonal projection of X onto L*(Q, F,PP).

6.2 Conditional Expectation and Independence

Theorem 6.5 X,Y € L'(Q, A, P), F,G o-algebras over Q and > 16.01.2020
g: (R?,B(R%)) — (R, B(R)) a bounded and measurable function. Then

I(X) L F = E(X|F)=EX,
. I(X),6 LF = E(X|F,G) =E(X|G) and
3. X UYandY F-measurable = E(g(X,Y)|F)=Eg(X,t)i=y .
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6.3 Conditioning on Random Variables

Remark 6.4 Let X : (Q,A) — (E,&) be measurable and F,G C A o-algebras over Q. We will
use abbreviations such as X 1 F instead of Z(X) 1L F, and similarly X,G L F instead of
c(Z(X)ug) 1L F.

Remark 6.5 Let X € LY(Q, A,P) and Y : (Q, A) — (E,E) measurable. We use the abbreviation
E(X |Y):=E(X |Z(Y)).

Lemma 6.2 (Factorization Lemma)

Y1 (Q,4) 2 (RY, B(RY)) . 39: (RYBRY) - (R B(R)) measurable
Z:(Q,I(Y)) ™ (R, B(R)) such that Z = g(Y)

Definition 6.3 Let X € L'(Q, A,P) and Y : (2, A) — (R%, B(R?)). Then we denote by
E[X|Y =y :=g(y) ER+—ycR?

the measurable function g : (R4, B(R?)) — (R, B(R)) that satisfies E(X | Y) = g(Y) by the previous
lemma.

Remark 6.6 In the discrete setting, that is imY is countable, we are able to evaluate the expression
as

E(X1,(Y))

if P(Y =y) >0
Elx|y=y={ 0w =020
0 otherwise

What about the continuous setting (conditioning on events with probability 0)?

Definition 6.4 (Conditional density)

Let (X,Y) : (Q, A, P) = (R% B(R?)) be a random variable with an image measure that has a density
fx,y) with respect to the Lebesgue measure on (R%, B(R?)). We define the conditional density of
X given'Y as

fX,y(m,y) lf S O
Ixyy(z,y) = { fy (y) fy ()

, where x,y € R.
0 otherwise

Remark 6.7 Recall that in the setting of the previous definition, the following holds P-almost surely
fr(y) = / foxyy (@ y)dy, where y € R.
R

Theorem 6.6 Let (X,Y) : (Q,A,P) — (R%,B(R?)) be a random variable with an image mea-
sure that has a density f(xy) with respect to the Lebesque measure on (R?,B(R?)) and let h :
(R%, B(R?)) — (R, B(R)) be measurable such that E|h(X,Y)| < co. Then

Er(X,Y)|Y =y] = / h(z,y)fxy (x| y)dz, for PY -almost all y € R.
R
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6.4 Introduction to Martingales

Definition 6.5 (Discrete stochastic process)
The family of random variables X,, : (, A,P) = (E,E),n € N is called a stochastic process.

Definition 6.6 (Discrete filtration)
Let (2, A) be a measurable space. A sequence F1 C Fo C ... of sub o-fields of A over Q is called a
filtration over (Q,.A) .

Definition 6.7 (Adapted process)
A stochastic process X, : (2, A,P) = (E,E),n € N is adapted to a filtration (F,)nen over (2, A)
if for all n € N, X, is F,,-E-measurable.

Definition 6.8 (Discrete martingale)
Let (2, A,P) be a probability space and (Fp)nen o filtration over (Q, A). The random variables
(Xn)nen are called a martingale with respect to (Fp)nen <=

1. X, € LY(Q, F,,P) and
2. E(Xpt1 | Fn) = Xy, P-almost surely for alln € N.
Remark 6.8 In the above situation, if instead of (2.) only
E (Xpnt1 | Fn) = X, P-almost surely for alln € N
holds, then we refer to it as a submartingale and if only
E(Xni1 | Fn) < X, P-almost surely for alln € N
holds, we call it a supermartingale.

Definition 6.9 (Predictable process) > 23.01.2020
A stochastic process C, : (Q, A,P) — (E,E),n € N>y is called predictable with respect to o filtration
(Fn)nen over (Q, A) if Cpyq is F-E-measurable for alln € N.

Definition 6.10 (Martingale transform)

Let X, : (Q,A,P) —» (R, B(R)),n € N be a martingale with respect to filtration (F,)nen over (2, A)
and let Cy, = (2, A,P) = (R,B(R)),n € N>y be a predictable process with respect to (Fp)nen. We
define

(C-X)n =) Crp1(Xpp1 — Xp)
k=1

and call ((C - X)n),cn the martingale transform of (X, )nen by (Cn)nens., -
Lemma 6.3 For martingales (X,,)nen we have EX,, = EX; for alln € N.

Theorem 6.7 Let Cy, 11, X, ¢ (©,A,P) = (R, B(R)),n € N be stochastic processes, where (Cy,)nens.,
is predictable and (X,)nen is a martingale with respect to a filtration (Fy,)nen over (2, A). Then

((C X)n),en is a martingale with respect to (Fp)nen with E(C' - X),, =0 for alln € N.
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6.5 Martingales and Stopping Times

Definition 6.11 (Stopping time)
Let (Fn)nen be a filtration over a probability space (2, A,P). A random variable T : (Q, A, P) —
(N<oo, 2N=>) such that

{r<n}eF, forallneN

is called a stopping time with respect to (Fp)nen-
Remark 6.9 In the above setting, T is a stopping time < {r=n} € F, foralln € N.

Definition 6.12 (Stopped process)
Let X, : (Q, A,P) — (E,&),n € N be a process adapted to filtration (Fp)nen over (2, A) and let
71 (2, A, P) = (N, 2V5) be a stopping time with respect to (Fp,)nen . We call
(X3 )nen, where X (w) := Xmingr(w),n} (W), for allw € Q,n € N
the process (Xn)nen stopped at time T .

Theorem 6.8 (Elementary stopping theorem)

Let X,, : (A P) — (R,B(R)) be a martingale with respect to (Fp)nen over (Q,A) and 7 :
(2, A,P) — (Ncoo,2Vs=) be a stopping time with respect to (Fp)nen. Then the stopped process
(X7 )nen is again a martingale with EXT = EX; for all n € N.

Definition 6.13 (o-algebra of the T-past)
Let 7 : (2, A, P) = (N<oo, 2V<>) be a stopping time with respect to filtration (Fy)nen over (€, A).
We call

A, ={Ae A|An{r <n} e F, for alln € N}

the o-algebra of the T-past.

Theorem 6.9 Let 7: (2, A, P) — (Nco, 25%°) be P-almost surely finite and a stopping time with
respect to filtration (Fp)nen over (,A). Let further X, : (Q,AP) = (R,BR)),n € N be a
stochastic process adapted to (Fp)nen. Then the random variable

Xrw) ifT(w) <oc

X Q=R w— X (w):= )
0 , otherwise
is A;-B(R)-measurable.

Theorem 6.10 (Doob’s stopping theorem)

Let X,, : (A P) — (R,B(R)) be a martingale with respect to (Fp)nen over (Q,A) and 7 :
(2, A,P) — (N<oo, 2Ns) be a stopping time with respect to (Fp)nen . Then X, is IP| 4, -integrable
and EX, = EXy if either of

1. 7 is P-almost surely bounded,
2. 1 is P-almost surely finite and (X,)nen is P-almost surely bounded or
3. Er <00 and (| Xpnt1 — Xnl),cy s P-almost surely bounded

is satisfied.

Remark 6.10 If in the above situation (X, )nen s only a supermartingale with respect to (Fp)nen
and (1.) - (3.) or

4. 7 18 P-almost surely finite and (X, )nen is P-almost surely non-negative

then X, is P 4_-integrable and instead EX; <EXj.
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6.6 Martingales and Convergence

Definition 6.14 (L?-boundedness)
Let (Xp)nen € LP(Q, A, P) and let p € [1,00). We say

(Xn)nen is LP-bounded <— IJK € R:VYn e N: ||Xn||p <K.

Lemma 6.4 (Upcrossing lemma) > 30.01.2020
Let X,, : (Q,A,P) = (R,B(R)),n € N be a supermartingale with respect to filtration (Fp)nen over
(Q,A) and let a,b € R,a < b. Then

VN >0: (b—a)EUy[a,b] < -Emin{(Xy —a),0},
where

< <
UN[a,b]::maX{keN()’ <851 <t < S9<ty< <sk<tk_NeN}

s.t. Xs, <aand Xy, >b,Vie{l,...,k}

Lemma 6.5 Let (X,)nen € LY(Q, A, P) be a L*-bounded supermartingale with respect to filtration
(Fn)nen over (2, A). Then the monotone limit

Ula,b] :== lim Uy|a,?]
N—00

satisfies
(b —a)EUla,b] < |a|+supE|X,| < .
n>0

In particular,
P(Ula,b] = 00) =0.

Theorem 6.11 (Doob’s martingale convergence theorem)
Let (X,)nen € L1(Q, A, P) be a L'-bounded supermartingale with respect to filtration (Fy,)nen over
(Q,A). Then a random variable X € L'(Q0, A,P) exists such that X,, ~=5 X .

Remark 6.11 Let (X,,)nen € LY(Q, A, P) be any supermartingale with respect to filtration (Fp)nen
over (Q, A) . If (X,)nen non-negative P-almost surely then (X, )nen is already L*-bounded.

Definition 6.15 Random wvariables X, : (Q, A P) — (R,B(R)),n € N are called P-uniformly
integrable if
Ve >0:3dK >0: E(1{|Xn\>K}|XnDS€a vn € N.

Remark 6.12 In the above situation if (Xn)nen € LP(Q, A, P) for some p > 1, they are P-
uniformly integrable as well.

Theorem 6.12 Let X,, : (Q, A P) —» (R,B(R)),n € N be a P-uniformly integrable martingale with
respect to filtration (Fp)nen over (Q,.A). Then a random variable X € L'(Q, A,P) exists such that

X, M} X and VYneN:E(X|F,) =X, P-almost surely.
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